Neural Networks | Нейронные сети
11.9K subscribers
755 photos
163 videos
170 files
9.41K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
​A Style-Based Generator Architecture for Generative Adversarial Networks

🔗 A Style-Based Generator Architecture for Generative Adversarial Networks
Paper (PDF):
http://stylegan.xyz/paper

Authors:
Tero Karras (NVIDIA)
Samuli Laine (NVIDIA)
Timo Aila (NVIDIA)

Abstract:
We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scal
🎥 Applying Deep Learning in healthcare by Florin Manaila
👁 1 раз 427 сек.
Welcome to this video in the PowerAI series.
Meet Florin Manaila from IBM Systems sharing how Architecting AI solutions can accelerate Breast Cancer Detection using Deep Learning.
#IBMsystems #IBMPowersystems
​Facebook has released #PyText — new framework on top of #PyTorch.

This framework is build to make it easier for developers to build #NLP models.

Link: https://code.fb.com/ai-research/pytext-open-source-nlp-framework/

🔗 Open-sourcing PyText for faster NLP development
We are open-sourcing PyText, a framework for natural language processing. PyText is built on PyTorch and it makes it faster and easier to build deep learning models for NLP.
​Трудности создания Open Source Machine Learning библиотеки на примере Apache Ignite ML

🔗 Трудности создания Open Source Machine Learning библиотеки на примере Apache Ignite ML
Доклад для тех кому интересно машинное обучение, написание библиотек для open source, распределенные вычисления и задачи, которые приходится решать в ходе ра...
​How to Improve Deep Learning Model Robustness by Adding Noise

https://machinelearningmastery.com/how-to-improve-deep-learning-model-robustness-by-adding-noise/

🔗 How to Improve Deep Learning Model Robustness by Adding Noise
Adding noise to an underconstrained neural network model with a small training dataset can have a regularizing effect and reduce overfitting. Keras supports the addition of Gaussian noise via a separate layer called the GaussianNoise layer. This layer can be used to add noise to an existing model. In this tutorial, you will discover how …
​Why Deep Learning Works: ICSI UC Berkeley 2018

🔗 Why Deep Learning Works: ICSI UC Berkeley 2018
Recent development in the Theory of Heavy Tailed Self Regularization for Deep Neural Networks. An invited talk at The International Computer Science Institut...