Neural Networks | Нейронные сети
11.9K subscribers
755 photos
163 videos
170 files
9.41K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
​How to Develop a Snapshot Ensemble Deep Learning Neural Network in Python With Keras

🔗 How to Develop a Snapshot Ensemble Deep Learning Neural Network in Python With Keras
Model ensembles can achieve lower generalization error than single models but are challenging to develop with deep learning neural networks given the computational cost of training each single model. An alternative is to train multiple model snapshots during a single training run and combine their predictions to make an ensemble prediction. A limitation of this …
🎥 AWS re:Invent 2018: Driving Machine Learning and Analytics Use Cases with AWS Storage (STG302)
👁 1 раз 657 сек.
You’ve designed and built a well-architected data lake and ingested extreme amounts of structured and unstructured data. Now what? In this session, we explore real-world use cases where data scientists, developers, and researchers have discovered new and valuable ways to extract business insights using advanced analytics and machine learning. We review Amazon S3, Amazon Glacier, and Amazon EFS, the foundation for the analytics clusters and data engines. We also explore analytics tools and databases, includi
Uncertainty-aware Food Analysis by Deep Learning

🎥 Uncertainty-aware Food Analysis by Deep Learning
👁 1 раз 2253 сек.
This Plenary speech was delivered by Prof. Petia Radeva (Autonomous University of Barcelona) during the first edition of Artificial Intelligence International Conference that was held in Barcelona on November 21-23 of 2018.
​Papers with codes, which published in top conferences and sorted by stars. Read the paper and play with code. This repository is continuous progress and weekly update
https://github.com/zziz/pwc

🔗 zziz/pwc
Papers with code. Sorted by stars. Updated weekly. - zziz/pwc
🎥 15x4 - 15 минут про Искусственный Интеллект
👁 2994 раз 1821 сек.
Обсуждение лекции - https://youtu.be/Pkx8xwcpG1U

"Что такое Искусственный Интеллект, каких он бывает видов, как устроен внутри? Будут ли у него чувства и эмоции, захватит ли он человечество или будет нам верным помощником?" Александр Гапак http://vk.com/alex_gapak

Слайды - https://goo.gl/jxhgmp

15х4 - это сообщество молодых ученых и фанатов науки.
Мы хотим, чтобы люди выступали и делились знаниями.

http://15x4.org
http://vk.com/15x4talks
http://twitter.com/15x4talks
http://facebook.com/15x4talks
http:/
​Data Fucking Science - наш новый open-source проект из Европы. Просьба написать, что думаете об интерактивной карте для машинного обучения:
https://www.datafuckingscience.com/ml
(лучше заходить с компа). Всем большое спасибо!

🔗 DFS | Machine Learning
​Cyber Security Meets Deep Learning Ver 3.0

🔗 Cyber Security Meets Deep Learning Ver 3.0
Deep Learning meets Cyber security - presentation - ISC2 Albuquerque chapter (Unedited content) -2018 Please Click SUBSCRIBE button to keep you informed abou...
​A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain

Computer Vision can detect Alzheimer’s Disease in brain scans SIX YEARS before a diagnosis. Uses PET scans, which are common & cheaper. 82% specificity at 100% sensitivity. Can pick out signs hard to see with the naked eye.

Link: https://pubs.rsna.org/doi/10.1148/radiol.2018180958

#CV #DL #Alzheimer #medical

🔗 A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain | Radiology
#ai #pytorch #deeplearning
PyTorch CNN Weights - Learnable Parameters in Neural Networks

https://www.youtube.com/watch?v=stWU37L91Yc

🎥 PyTorch CNN Weights - Learnable Parameters in Neural Networks
👁 1 раз 1431 сек.
In this post, we'll be exploring the inner workings of PyTorch, Introducing more OOP concepts, convolutional and linear layer weight tensors, matrix multiplication for deep learning and more!

Check out the corresponding blog and other resources for this video at:
http://deeplizard.com/learn/video/stWU37L91Yc

❤️🦎 Special thanks to the following polymaths of the deeplizard hivemind:
George Tohme

Support collective intelligence, and join the deeplizard hivemind:
http://deeplizard.com/hivemind

Code:
https: