ML&|Sec Feed
867 subscribers
890 photos
54 videos
224 files
1.38K links
Feed for @borismlsec channel

author: @ivolake
Download Telegram
🌟 LangChain-Chatchat — LLM-приложение Q&A, использующее локальную базу знаний

LangChain-Chatchat (ранее Langchain-ChatGLM) — это что-то наподобие поисковой системы на основе Langchain, которая может использовать локальные файлы.

Основная идея Chatchat довольно проста, вот основные этапы процесса:
загрузка файлов базы знаний ⟶ чтение текста ⟶ сегментация текста ⟶ векторизация текста ⟶ векторизация вопроса ⟶ поиск вектора текста, наиболее похожего на вектор вопроса ⟶ найденный вектор добавляется в промпт в качестве контекста и вопроса ⟶ передается в LLM для генерации ответа

А вот так можно начать работу с Chatchat:

git clone https://github.com/chatchat-space/Langchain-Chatchat.git
cd Langchain-Chatchat
pip install -r requirements.txt
pip install -r requirements_api.txt
pip install -r requirements_webui.txt

git lfs install
git clone https://huggingface.co/THUDM/chatglm2-6b
git clone https://huggingface.co/moka-ai/m3e-base

python copy_config_example.py
python init_database.py --recreate-vs

python startup.py -a


🖥 GitHub

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Тут сделали прикольный тул чтобы папиры верстать, выглядит прикольным гибридом latex+md

typst.app
🌟 InterpretML позволяет интерпретировать и объяснить работу конкретных ML-пайплайнов

pip install interpret

Цель InterpretML — сделать ML более понятным, чтобы работать с какими-то алгоритмами и пайплайнами, как с чёрным ящиком.
Поддерживает обучение специальных интерпретируемых моделей (glassbox), а также объяснение существующих конвейеров ML (blackbox).

🖥 GitHub
🟡 Доки

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 Apache TVM — компиляция ML-моделей для любых аппаратных характеристик

Apache TVM — это фреймворк компилятора ML-приложений с открытым исходным кодом для CPU, GPU и не только.
Цель Apache TVM — дать ML-инженерам возможность оптимизировать и эффективно выполнять вычисления на любом железе.

🖥 GitHub
🟡 Доки

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Рестарт
А вот это реально очень полезно — учёные Сбера и лаборатории FusionBrain Института AIRI нашли способ ускорить работу больших языковых нейросетей на 10-15%.

И это все без потери качества. Исследователи изучили устройство 20 известных open source языковых моделей и выяснили, что между эмбеддингами (числовые представления данных) есть высокая линейная зависимость. Как следствие, это позволяет существенно оптимизировать архитектуры.

«Мы, в Сбере, планируем провести тестирование рассмотренной идеи и в случае успеха — тиражировать её на флагманские модели GenAI. Поиск таких смекалок в AI-архитектурах позволяет частично компенсировать вычислительный голод, поэтому продолжим поддержку таких исследований в направлении обучения больших моделей» — рассказал Андрей Белевцев, старший вице-президент, руководитель блока «Технологическое развитие» Сбербанка.