New video by Think Twice:
The Fermat Point of a Triangle | Geometric construction + Proof |
https://youtu.be/wWXsajE-L_o
The Fermat Point of a Triangle | Geometric construction + Proof |
https://youtu.be/wWXsajE-L_o
YouTube
The Fermat Point of a Triangle | Geometric construction + Proof |
Learn more theorems in Euclidean geometry and their applications at:
https://brilliant.org/ThinkTwice
-----------------------------------------------------------------------------------------------------------
Please consider supporting Think Twice on:
…
https://brilliant.org/ThinkTwice
-----------------------------------------------------------------------------------------------------------
Please consider supporting Think Twice on:
…
New video by Numberphile:
A Miraculous Proof (Ptolemy's Theorem) - Numberphile
https://youtu.be/bJOuzqu3MUQ
A Miraculous Proof (Ptolemy's Theorem) - Numberphile
https://youtu.be/bJOuzqu3MUQ
YouTube
A Miraculous Proof (Ptolemy's Theorem) - Numberphile
Featuring Zvezdelina Stankova... Want more?
Part 2 (bringing in Pentagons and the Golden Ratio) is at: https://youtu.be/o3QBgkQi_HA
More links & stuff in full description below ↓↓↓
Zvezda's Numberphile playlist: http://bit.ly/zvezda_videos
Zvezda's webpage:…
Part 2 (bringing in Pentagons and the Golden Ratio) is at: https://youtu.be/o3QBgkQi_HA
More links & stuff in full description below ↓↓↓
Zvezda's Numberphile playlist: http://bit.ly/zvezda_videos
Zvezda's webpage:…
Forwarded from Visuals for maths
This media is not supported in your browser
VIEW IN TELEGRAM
Milü, approximations to #pi
Forwarded from Visuals for maths
This media is not supported in your browser
VIEW IN TELEGRAM
Approximation to #pi using Monte Carlo Integration
New video by MindYourDecisions:
Solve For The Radius--A Challenging Problem!
https://youtu.be/Snkd7xPIjWg
Solve For The Radius--A Challenging Problem!
https://youtu.be/Snkd7xPIjWg
YouTube
Solve For The Radius--A Challenging Problem!
Thanks to JY from Indonesia for suggesting a similar problem! This is a fun and challenging problem for high school students (AMC 12). Can you solve it? Special thanks this month to: Richard Ohnemus, Shrihari Puranik, Kyle, Michael Anvari. Thanks to all supporters…