🆕 Mathologer: The secret of the 7th row - visually explained
YouTube
The secret of the 7th row - visually explained
In 1995 I published an article in the Mathematical Intelligencer. This article was about giving the ultimate visual explanations for a number of stunning circle stacking phenomena. In today's video I've animated some of these explanations.
Here is a copy…
Here is a copy…
🆕 blackpenredpen: Believe in Peyam, NOT Wolframalpha
YouTube
Believe in Peyam, NOT Wolframalpha
Limit of ln(-x^7) as x goes to inf, does it equal to inf? Was Wolframalpha wrong?
Check out Dr. Peyam!! https://youtu.be/OtfnscR_7Bk
Please subscribe for more math content!
Check out my T-shirts & Hoodies: https://teespring.com/stores/blackpenredpen…
Check out Dr. Peyam!! https://youtu.be/OtfnscR_7Bk
Please subscribe for more math content!
Check out my T-shirts & Hoodies: https://teespring.com/stores/blackpenredpen…
🆕 blackpenredpen: Area under y=x^3 from 0 to 1, rectangle sum vs. integral
YouTube
Area under y=x^3 from 0 to 1, Riemann sum vs. Integral Power Rule
This is how the integrals were started!
We will be using n equal width right endpoint rectangles to approximate the area under y=x^3 from 0 to 1, then get the actual area. As a bonus, I will of course show you the integral way of doing this at the end. …
We will be using n equal width right endpoint rectangles to approximate the area under y=x^3 from 0 to 1, then get the actual area. As a bonus, I will of course show you the integral way of doing this at the end. …
🆕 Think Twice: What is the area under an arc of a cycloid curve?
YouTube
What is the area under an arc of a cycloid curve?
Build an understanding behind different concepts of geometry that will help you tackle challenging problems at:
https://brilliant.org/ThinkTwice
_________________________________________________________________
Why does the area under a cycloid curve equal…
https://brilliant.org/ThinkTwice
_________________________________________________________________
Why does the area under a cycloid curve equal…
Spend 1 hour of your life to watch this crossover masterpiece:
#video
https://www.youtube.com/watch?v=gO8AwBmQK5Q
#video
https://www.youtube.com/watch?v=gO8AwBmQK5Q
YouTube
Mathvengers: Integral War [ 24 ways to integrate cos(x) from 0 to pi/2]
Mfw Matt Parker didn't finish his part on time :((( Nvm that, enjoy this shtfest! =D We are going to integrate the cos(x) from 0 to pi/2 in basically 24 different ways! Starring:
-Dr. Peyam: https://www.youtube.com/channel/UCoOjTxz-u5zU0W38zMkQIFw
-3B1B:…
-Dr. Peyam: https://www.youtube.com/channel/UCoOjTxz-u5zU0W38zMkQIFw
-3B1B:…
Mathematics Channel
Photo
O Baricentro da Mente on Facebook
Como Kepler quase descobriu o Cálculo
Kepler foi um dos matemáticos que quase descobriu o Cálculo. Quando formulava suas Leis, viu-se com o problema de encontrar as áreas de certas curvas, o que o fez utilizar o método dos indivisíveis, obtendo sucesso para muitas delas, esbarrando na descoberta do Cálculo.
Artigo no blog: http://bit.ly/Kepler-Calculo
https://external.xx.fbcdn.net/safe_image.php?d=AQC01AlVFAlyMWLW&url=https%3A%2F%2F4.bp.blogspot.com%2F-9qtcC7EJ8Ho%2FXFFtVVJUlrI%2FAAAAAAAAmt4%2FoTVAhDFyJasBSvCRMq4v9QT25d2k95QqwCLcBGAs%2Fw1200-h630-p-k-no-nu%2FComo%252BKepler%252Bquase%252Bdescobriu%252Bo%252BC%2525C3%2525A1lculo.png&_nc_hash=AQCXwlZtjc8c1wM2
Kepler utilizada o método dos indivisíveis para calcular certos tipos de áreas, mas ainda assim dependia de uma engenhosidade geométrica que nem sempre era fácil conseguir ou mesmo possível.
(Feed generated with FetchRSS)
Como Kepler quase descobriu o Cálculo
Kepler foi um dos matemáticos que quase descobriu o Cálculo. Quando formulava suas Leis, viu-se com o problema de encontrar as áreas de certas curvas, o que o fez utilizar o método dos indivisíveis, obtendo sucesso para muitas delas, esbarrando na descoberta do Cálculo.
Artigo no blog: http://bit.ly/Kepler-Calculo
https://external.xx.fbcdn.net/safe_image.php?d=AQC01AlVFAlyMWLW&url=https%3A%2F%2F4.bp.blogspot.com%2F-9qtcC7EJ8Ho%2FXFFtVVJUlrI%2FAAAAAAAAmt4%2FoTVAhDFyJasBSvCRMq4v9QT25d2k95QqwCLcBGAs%2Fw1200-h630-p-k-no-nu%2FComo%252BKepler%252Bquase%252Bdescobriu%252Bo%252BC%2525C3%2525A1lculo.png&_nc_hash=AQCXwlZtjc8c1wM2
Kepler utilizada o método dos indivisíveis para calcular certos tipos de áreas, mas ainda assim dependia de uma engenhosidade geométrica que nem sempre era fácil conseguir ou mesmo possível.
(Feed generated with FetchRSS)