Maths Sorcerer 🎩
258 subscribers
99 photos
6 files
53 links
πŸ•΅οΈ Cool and interesting Maths Stuffs

Are you techie person?
@the_techy_altair ❣️❣️

Maths is just not about numbers and equations , it has something deeper with learning and understanding.πŸ˜‡πŸ˜‡
Download Telegram
β€‹β€‹β€‹β€‹πŸ‘¨β€πŸŽ“Meeting with MathematicianπŸ‘¨β€πŸŽ“ (Episode 2)

Bhaskara II (1114 – 1185), also known as Bhaskara Achārya ("Bhaskara the teacher"), was an Indian mathematician and astronomer.
He was the lineal successor of the noted Indian mathematician Brahmagupta. His works represent a significant contribution to mathematical and astronomical knowledge in the 12th century. He has been called the greatest mathematician of medieval India.

Contribution:- Bhaskara developed an understanding of calculus, the number systems, and solving equations, which were not to be achieved anywhere else in the world for several centuries. He was the one who declared that any number divided by zero is infinity

His main work, the Siddhanta Siromani (Crown of Treatises) comprises 1450 verses which have four segments. Each segment of the book focuses on a separate field of astronomy and mathematics.They were:-
1. Lilavati: A treatise on arithmetic, geometry and the solution of indeterminate equations

2.Bijaganita: ( A treatise on Algebra),
3.Goladhyaya: (Mathematics of Spheres),
4.Grahaganita: (Mathematics of the Planets).

Previous episode:- here
Join @maths_sorcerer ❣️❣️
Maths Sorcerer 🎩 pinned Β«β€‹β€‹β€‹β€‹πŸ‘¨β€πŸŽ“Meeting with MathematicianπŸ‘¨β€πŸŽ“ (Episode 2) Bhaskara II (1114 – 1185), also known as Bhaskara Achārya ("Bhaskara the teacher"), was an Indian mathematician and astronomer. He was the lineal successor of the noted Indian mathematician Brahmagupta. His…»
​9 Is Considered a "Magic" Number

Have you ever heard that the number 9 is considered to be a "magic" number? No? Well it is, and here is why: if you multiply a number by 9 and add all the digits of the new number together, the sum will always add up to 9 or its multiples . So, for example:

8 x 9 = 72

7 + 2 = 9

Or:

4 x 9 = 36

3 + 6 = 9

See? It truly is magical. Try it out. Every single combination will always lead you back to 9 or its multiple !@maths_sorcerer
​In A Group Of 23 People, Two Will Probably Share a Birthday


In a sample of 23 people, there is a 50 percent chance that two will share the same birthday. This phenomenon is (fittingly) called the birthday problem. There is a whole calculation for why this is a thing, too. It all has to do with probability. For how, exactly, it works, direct yourself to this explainer, by mathematician Brett Berry, as she can do a far better job at explaining it than we ever could.
Solution needed !!!!
@maths_sorcerer
​The answer is always 6174

Starting with any four digit number (that has at least two different digits) just follow the following steps:

1. Arrange the digits of the four digit number in descending/ascending order to make the largest and smallest numbers possible.
2. Subtract the smaller number from the larger one.
3. Take the answer and repeat the process.

Eventually you'll end up at 6174 or 'Kaprekar's Constant'. Just as remarkable, it never takes more than seven stages to get there.

Picking a number at random, let's try 4551, for instance.

Stage 1: 5541-1455 = 4086
Stage 2: 8640 - 0468 = 8172
Stage 3: 8721 - 1278 = 7443
Stage 4: 7443 - 3447 = 3996
Stage 5: 9963 - 3699 = 6264
Stage 6: 6642 - 2466 = 4176
Stage 7: 7641 - 1467 = 6174
@maths_sorcerer
​Armstrong number

An Armstrong number of three digits is an integer such that the sum of the cubes of its digits is equal to the number itself. For example, 371 is an Armstrong number since 3Β³ + 7Β³ + 1Β³ = 371.

@maths_sorcerer
Teenagers texting in Thailand will send the digits 555 to indicate that something is funny. In the Thai language, 5 is pronounced as ha which when translated becomes ha-ha-ha.
@maths_sorcerer