Математика просто!
179 subscribers
590 photos
100 videos
23 files
47 links
О математике - легко, весело, просто!
И немного про образование вообще, немного про науку, чуть-чуть про педагогику...
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
Через первую трубу бассейн заполняется за 3 часа, через вторую — за 6 часов. Через третью трубу бассейн можно слить за 4 часа. Сколько времени потребуется для заполнения бассейна, если открыть все 3 трубы одновременно?
👍1
В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в первом автомате закончится кофе, равна 0,2. Вероятность того, что кофе закончится во втором автомате, такая же. Вероятность того, что кофе закончится в двух автоматах, равна 0,18. Найдите вероятность того, что к концу дня кофе останется в двух автоматах.
Вероятность того, что кофе останется в двух автоматах равна
Anonymous Quiz
14%
0,58
0%
0,44
14%
0,78
0%
0,66
43%
ЕГЭ - зло!
29%
Правильный ответ - другой!
😁2
Майк Дейви из Висконсина, создатель работающей машины Тьюринга — её вы видите на заднем плане фото. Наблюдать за работой машинки одно удовольствие как для математиков, так и для тех, кому нравятся всякие тонкие технические штуки. Как маркер изящно рисует на ленте единички и нолики, а щётка их аккуратно стирает

Вот видео , а вот сайт Майка, где всё подробно описано
🔥1
В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,4. Вероятность того, что кофе закончится в обоих автоматах, равна 0,22. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

Решение.
Так как 0,4 ·0,4 ≠ 0,22, то события «кофе закончился в 1-ом автомате» и «кофе закончился во 2-ом автомате» зависимые. Обозначим через А событие «кофе остался в первом автомате», через В – «кофе остался во втором автомате». Тогда P(A) = P(B) = 1- 0,4 = 0,6.

Событие «кофе остался хотя бы в одном автомате» – это А U В, его вероятность равна Р(А U В) = 1 — 0,22 = 0,78, так как оно противоположно событию «кофе закончился в обоих автоматах».

По формуле для пересечения событий: P(A ∩ B) = P(A) + P(B) — P(A ∪ B)= 0,6 + 0,6 — 0,78 = 0,42
👍3
Математика просто!
В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,4. Вероятность того, что кофе закончится в обоих автоматах, равна 0,22. Найдите вероятность того, что к концу дня кофе останется в…
В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,4. Вероятность того, что кофе закончится в обоих автоматах, равна 0,22. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

Решение.
Другой способ
Обозначим через Х событие «кофе закончился в первом автомате», через Y – «кофе закончился во втором автомате».
Тогда по условию Р(X) = Р(Y) = 0,4, P(X ∩ Y) = 0,22. Так как P(X ∩ Y) ≠ P(X) · P(Y), то события Х и Y зависимые. По формуле для объединения событий:

P(X∪Y)=P(X)+P(Y)-P(X∩Y) = 0,4 + 0,4 – 0,22 = 0,58.

Мы нашли вероятность события Х U Y «кофе закончился хотя бы в одном автомате». Противоположным событием будет «кофе остался в обоих автоматах», его вероятность равна = 1 –P(X ∪ Y) = 1 –0,58 = 0,42.
👍3
Эндрю Уайлс — профессор математики Принстонского университета, он доказал Великую теорему Ферма, над которой не одно поколение учёных билось сотни лет.

Впервые Уайлс узнал о последней теореме Ферма, когда ему было десять лет. Он зашел по дороге из школы домой в библиотеку и увлёкся чтением книги «Последняя задача» Эрика Темпла Белла. Возможно с этого момента он посвятил свою жизнь поискам доказательства, которое ускользало от лучших умов на планете в течение трёх веков.

Он нашёл его 30 лет спустя после доказательства другим учёным, Кеном Рибетом, связи теоремы японских математиков Таниямы и Симуры с Великой теоремой Ферма. В отличие от скептически настроенных коллег, Уайлс сразу понял — вот оно, и через семь лет поставил точку в доказательстве теоремы Ферма.

Сам процесс доказательства выдался очень драматичным: Уайлс завершил свой труд в 1993-м году, но прямо во время публичного выступление нашел в своих рассуждениях существенный «пробел». Два месяца ушло на поиск ошибки в вычислениях (ошибка крылась среди 130 печатных страниц решения уравнения). Далее, полтора года велась напряжённая работа над исправлением ошибки. Всё научное сообщество Земли было в недоумении. Уайлс завершил свою работу 19 сентября 1994-го года и сразу же и представил её обществу.

27 июня 1997 года Уайлс получил премию Вольфскеля, которая приблизительно составила $50 000. Это намного меньше, чем Вольфскель намеревался оставить столетием раньше, но гиперинфляция привела к сокращению суммы. А вот премия Филдса, аналог Нобелевской премии для математиков, Уайлсу не досталась из-за того, что её вручают математикам моложе сорока лет. Вместо этого он получил специальную серебряную тарелку на церемонии вручения медали Филдса в честь его важного достижения.
👍2