МИСиС | Наука о данных
453 subscribers
27 photos
6 videos
24 files
113 links
Канал с новостями для студентов и абитуриентов программы SkillFactory и МИСиС «Наука о данных»

Помогаем освойть самую востребованную профессию 2022 года, учим понимать ключевые принципы и алгоритмы анализа данных.

Подробнее — http://bit.do/ds-sf
Download Telegram
В нашей магистратуре “Наука о данных” НИТУ МИСиС, как оказалось, легко могут встретиться:

🚑 38-летний бывший врач-реаниматолог, который работал на “скорой”, но со школьной скамьи мечтал обучать машины

💻 25-летний программист, который мечтает работать с нейроинтерфейсами и попасть в компанию к Илону Маску

💃40-летняя студентка из Испании, которая хочет внести свой вклад в мировой прогресс, а толчком для изучения IT стала пандемия

Из какой сферы приходят в data science?
Кто они
будущие data scientists?
Как выбирают программу?
О чем мечтают?


И о том, какую роль сыграла пандемия, читайте в нашей статье 👉🏻 https://habr.com/ru/company/skillfactory/blog/527604/
This media is not supported in your browser
VIEW IN TELEGRAM
📌Сегодня отвечаем на вопрос: «Что помогает учиться в онлайн-магистратуре "Наука о данных"»? 
 
В магистратуре вы можете получить образование в новой для себя сфере, даже если ваш базовый диплом совершенно другой. 
Но, перед тем как сдать вступительный экзамен и поступить, желательно самостоятельно освоить минимум знаний для учебы.
 
◽️ Основы языка программирования Python.
Python — один из основных инструментов для дата-сайентиста.
В первом семестре студенты будут изучать программирование на Python и большим плюсом станет, если вы уже понимаете основы синтаксиса Python. 
 
◽️ Понимание разделов математики, такие как — статистика, теория вероятности, математический анализ, линейная алгебра.
Без знаний математики не обойтись ни одному дата-сайентисту. 
Статистика и теория вероятности используется для анализа данных.
А линейная алгебра и математический анализ — нужны для понимания и применения алгоритмов машинного обучения. 
 
◽️ Навыки коммуникации или soft skills.
Дата-сайентист никогда не работает в одиночку!
В магистратуре много проектной работы, в которой нужно быть не просто исполнителем, а полноценным командным игроком.
Во время проектных практикумов и хакатонов, студенты будут пробовать себя в разных ролях: project manager, product manager, team lead. 
Кроме создания продукта с нуля, студенты научатся презентовать его, а также слушать и понимать друг друга, получать и давать сбалансированную обратную связь.
This media is not supported in your browser
VIEW IN TELEGRAM
📌Онлайн-формат: почему стоит учиться в онлайн-магистратуре.

В современном мире совершенно невозможно предугадать или спланировать ближайшее будущее.

Мы мечтаем о понятной, надежной жизни, но реальность такова, что приходится жить в мире VUCA —нестабильном, неопределенном, сложном и неоднозначном, а пандемия — лишний раз нам это доказала.
Именно поэтому, обучение онлайн — разумное решение не только в 2020 году.

Несмотря на скепсис про эффективность онлайн-обучения, на примере нашей магистратуры, мы видим явные положительные стороны:

▪️ Студенты могут учиться в своём собственном темпе и по своему собственному графику, совмещая учебу с работой и личной жизнью.

▪️ Вернуться к пройденному материалу можно в любое время, по мере необходимости.

▪️ В онлайне застенчивым или сдержанным студентам проще развивать коммуникативные навыки.

▪️У нас есть кураторы, которые смогут найти решение по любому вопросу 24/7, а в прохождении модуля помогут эксперты курса. Получить ответ от эксперта можно в любом удобном формате: письменно и устно.

Отзыв нашей студентки — подтверждающий вышесказанное (смотрите в следующем посте)
Рубрика «Отзывы наших студентов».

«Отсутствие бюрократии в образовательном процессе. Пожаловалась я на недостаток тренажёров – мне прислали. Где-то выявили ошибку - выявили - заменили. Проблема ошибок и опечаток, кстати общая с офлайном, они ведь не зависят от того, задание дано онлайн или офлайн. Только в онлайне — это исправляется гораздо быстрее».

#отзывы
This media is not supported in your browser
VIEW IN TELEGRAM
📌С понедельника стартует новая дисциплина для наших студентов:

⚙️Современные методы решения инженерных задач⚙️

Курс разработал кандидат технических наук, доцент, заведующий кафедрой автоматизации НИТУ «МИСиС» и преподаватель с 43-м стажем — Калашников Евгений Александрович


Курс состоит из 4 модулей:


 1️⃣ «Оценка экономических и производственных параметров для формализации инженерной задачи»

 2️⃣ «Балансовая модель экономики производства»

 3️⃣ «Линейная производственная модель»

 4️⃣ «Планирование производственно-экономических процессов»
 

После прохождения курса, студенты научатся:


▪️Применять современные теоретические и экспериментальные методы разработки математических моделей исследуемых объектов и процессов, относящихся к профессиональной деятельности по направлению подготовки.

▪️Проводить математическое моделирование процессов, оборудования, средств и систем автоматизации, контроля, диагностики, испытаний и управления с использованием современных технологий научных исследований, разрабатывать алгоритмическое и программное обеспечение средств и систем автоматизации и управления. 

▪️ Демонстрировать практические навыки для решения проблем и проведения ко́мплексных исследований; системное понимание применяемых технических решений, технологий и процессов в области, соответствующей образовательной программе; глубокое понимание экономических, организационных и управленческих вопросов (управление проектами, управление рисками и управление изменениями).
This media is not supported in your browser
VIEW IN TELEGRAM
📌В онлайн-магистратуре «Наука о данных» прошла ежемесячная внеучебная встреча.

Кто следит за новостями магистратуры, знает, что внеучебные встречи проводятся регулярно с целью — немного расслабиться и пообщаться с коллегами 🫂

В этот раз встреча прошла в формате игры под названием «Данетка» — командная активность, в которой ведущий задаёт ситуацию, и отвечает на вопросы игроков односложным «Да» или «Нет».

Такой подход помогает развить критическое мышление 🧠

Всего было решено 11 задач, затрачено около 1 часа.
Местами были трудности, чтобы задать верный вопрос ведущему, но в итоге удалось решить все задачи.

Чтобы вы прониклись духом нашей встречи, предлагаем решить одну из задач 🙂

⁉️ Задача  «Девушка надевает гипс себе на руку, с которой ничего не случилось. Зачем?»

Ждем ваши варианты ответов в комментариях👇🏻
This media is not supported in your browser
VIEW IN TELEGRAM
📌На шаг ближе к цели — студенты онлайн-магистратуры завершили курс «Высшая математика и алгоритмы машинного обучения» ⚙️
 
Курс длился 7 недель, в завершение студенты смогли проверить полученные знания на практике 🧠
 
Студентов разделили на команды по 5–6 человек и дали задачу, на основе которой нужно выполнить задания.
 
👉🏻 Задача: Представьте, что вы богатый и успешный глава хедж-фонда, демонстрирующего рекордные показатели прибыли. К вам обращается инвестор. Он хочет приумножить свои миллионы и готов перевести деньги на ваш счёт в течение часа. НО! Если вы допустите ошибку и потеряете часть его вложений, он объявит вам войну.
Вроде бы и несложно, но именно в этот момент — на вашей дороге появляется достаточно сильный конкурент, который наступает вам на пятки. 
Ваша задача проанализировать рынок, найти оптимальный и наиболее выгодный вариант, чтобы удержаться в лидирующих позициях и не нажить себе сильного врага.
 
1️⃣ задача — Визуализировать данные
Необходимо загрузить данные и выполнить задания:
◽️построить графики стоимости акций на начало каждого дня 
◽️ отразить на графике объёмы торгов за каждый день. Прокомментировать полученные графики: определить, какие события могли повлиять на повышение объёма (отчёт компании, кризис и т. п.) 
◽️добавить ко всем графикам легенду 
◽️определить, цены каких компаний наиболее и наименее коррелированны 
 
2️⃣ задача — Смоделировать данные
Обучить линейную регрессию для предсказания цены закрытия на текущий день. В качестве фичей возьмите цены открытия нескольких компаний за 7 дней до текущего. 
Цель обучения — предсказать цену закрытия на последний день рассматриваемого промежутка для одной из компаний. 
 
3️⃣ задача — Спроектировать анализ данных 
Попробовать разные варианты доработки, но помнить и про переобучение — чем больше признаков, тем больше модель способна «запомнить» исходные данные и менее эффективна для работы с «реальными» данными. 
 
Пример идеи для доработки:
 

Если взять цены в качестве исходных данных, модель будет плохо работать с будущим — цены, как правило, это сильно изменчивая категория. Имеет смысл рассмотреть относительные изменения цен за предыдущие N дней (буквально — насколько цены последующих дней отличаются от цен за предшествующий период). 
 
На решение задач было чуть меньше 2 недель, студенты представили своё решение на семинаре, а после получили обратную связь от Эмиля Магеррамова
 
Первый семестр подходит к концу и совсем скоро — сессия🚀
О первой сессии в магистратуре поговорим в следующий раз!
This media is not supported in your browser
VIEW IN TELEGRAM
📌Добрый день!
Сегодня хотим поделиться с вами статьей, в которой наши студенты детально рассказали о том, как они собрали открытый датасет в рамках первого хакатона онлайн-магистратуры «Наука о данных»

Переходите по ссылке 👉🏻 https://habr.com/ru/company/skillfactory/blog/534682/
This media is not supported in your browser
VIEW IN TELEGRAM
📌Ура! Первый семестр в онлайн-магистратуре «Наука о данных» НИТУ МИСиС подходит к концу, совсем скоро сессия!

Рассказываем о первой сессии в магистратуре🙂


Алгоритм формирования итоговой оценки

✍️Все испытания пройдут в письменной форме.
✔️Оценка за зачет и зачет с оценкой, будет выставлена по итогам усвоения материалов на платформе и посещения вебинаров/семинаров в течение семестра.

Зачёты:

◽️Английский язык для IT
◽️Программирование на Python
◽️Организация и технология научных исследований
◽️Высшая математика для машинного обучения

За все вышеперечисленные предметы — зачёт ставится автоматом за пройденный курс на платформе.


Экзамены:

🛠Современные методы решения инженерных задач
Оценка комплексная и включает в себя — оценку за индивидуальное расчётно-графическое задание + посещение всех практических занятий группы + активность на этих занятиях (при этом условии можно получить автомат).
Формат экзамена — выполнение заданий из имеющегося перечня с оценкой от преподавателя.

🤖Основные алгоритмы машинного обучения
Чтобы допустили до экзамена, нужно посетить все занятия группы и выполнить задания на платформе.
Экзамен будет проходить на платформе.
Формат экзамена — выполнение на платформе теоретических заданий и практических задач за отведённое время.
This media is not supported in your browser
VIEW IN TELEGRAM
📌Добрый день!
Вот-вот наступит Новый год, впереди целых 10 дней каникул 🎄

Предлагаем провести их с пользой, поэтому делимся с вами — списком полезной литературы от академического директора программы Ивана Ямщикова 🥁


📚Список литературы на первый семестр 📚

🔹Туганбаев А. А. Линейная алгебра: учебное пособие Электронная библиотека Москва: Флинта, 2017

🔹Юрчук, С. Ю. Методы математического моделирования: учебное пособие Электронная библиотека Москва: МИСиС, 2018

🔹М. Лутц “Программирование на Python, 4-е издание”

🔹Франсуа Шолле: Глубокое обучение на Python.
https://www.labirint.ru/books/645742/
p.s. ещё больше примеров и кода

🔹Николенко, Кадурин, Архангельская: Глубокое обучение. Погружение в мир нейронных сетей.
Подробнее: https://www.labirint.ru/books/622166/
p.s. дружить с математикой

🔹Бенджио, Гудфеллоу, Курвилль: Глубокое обучение.
Подробнее: https://www.labirint.ru/books/620686/
p.s. для тех, кто хочет подробнее и с базовой математикой

🔹Перевод книги Эндрю Ына «Страсть к машинному обучению»
Главы 1 — 14
https://habr.com/ru/post/419757/
p.s. в качестве чтения перед сном


С наступающим! ❤️
This media is not supported in your browser
VIEW IN TELEGRAM
📌Добрый вечер!
Сегодня расскажем вам о событиях в жизни магистратуры «Наука о данных» за эту неделю.

Подошла к концу первая сессия! Ура! 🥳
Наши студенты на шаг ближе к своей цели — освоить новую для себя профессию🎯

Напоминаю, что с 3 го семестра мы разделимся на три трека:

▫️Artificial Intelligence Developer
▫️Big Data Engineer
▫️Machine Learning Developer 
 
🛤Чтобы помочь студентам сделать правильный выбор на своем карьерном пути — мы организовали Q&A встречу по треку Big Data Engineer, с экспертом из индустрии — Виталием Худобахшевым (тимлид в Jet Brains, разработчик плагина Big Data Tools) 
 
Такие встречи пройдут по всем трём трекам, а пока делимся с вами некоторыми вопросами и ответами:

▪️Как выглядит рабочий день дата инженера, исключая совещания? Пришёл и что делает? Проверят всё ли живо и чинит или что-то пишет?

«Часто чинит и разгребает инциденты, которые довольно часты на практике. Чистит код, улучшает/добавляет pipeline. Условно говоря следит, чтобы всё не развалилось. Работа по входящим задачам от других отделов в пределах компетенции специалиста».

▪️Какие инструменты будут использоваться наибольшим образом? На каком уровне мы будем работать с этим?

«Apache Spark — очевидный лидер среди используемых инструментов, Hadoop — не понимать, как работает этот инструмент также нельзя (Spark работает поверх Hadoop, к примеру) и вся инфраструктура вокруг Hadoop важна для того, чтобы понимать, как кластера существуют. Hive важен для аналитики. DataGrip как самый продвинутый инструмент для работы с SQL, т. е. опять же к аналитике ближе. Koalos фреймворк для получения API Pandas, просто работающий поверх Apache Spark. Dask — фреймворк на чистом пайтоне, много времени изучение не должно занять, но и без него нельзя. Kafka — это продюсер большого количества контента, который после попадает в JDBC, Hadoop, а после попадает в Spark». 

▪️Будет ли возможность брать дисциплины из нескольких треков или нужно строго выбрать один?

«Такая возможность будет, но нужно чётко понимать, что объём будет довольно-таки большой».