Forwarded from Machinelearning
RevAI, лидер в области профессиональной транскрипции английской речи выпустила в открытый доступ фреймdорк Reverb и набор моделей для построения конвейера speech-to-text.
Reverb включает в себя: модель ASR на базе WeNet и 2 версии модели диаризации речи. Весь паплайн Reverb можно запускать как на CPU, так и на GPU.
Reverb ASR обучалась на 200 000 часов английской речи, профессионально транскрибированной людьми — это самый большой корпус транскрибированной человеком речи, когда-либо использовавшийся для обучения модели с открытым исходным кодом.
Она позволяет контролировать уровень дословности выходного транскрипта для создания чистого, удобочитаемого текста и справляется с обработкой аудио, требующего транскрипции каждого произнесенного слова, включая запинания и перефразирования.
Reverb ASR использует совместную архитектуру CTC/attention и поддерживает несколько режимов декодирования. Указать один или несколько режимов можно в
recognize_wav.py. Для каждого режима будут созданы отдельные выходные каталоги. Варианты декодирования: В оценке Reverb ASR использовались три корпуса длинных аудиозаписей: Rev16 (подкасты), Earnings21 и Earnings22 (телефонные разговоры).
Reverb ASR значительно превосходит конкурентов в тестовых наборах ASR для длинных форм, особенно в Earnings22, где в основном речь носителей английского языка не как родного.
Для традиционного бенчмаркинга использовался GigaSpeech, Reverb ASR запускался в дословном режиме на скриптах оценки Hugging Face Open ASR Leaderboard. По их результатам Reverb ASR значительно превосходит конкурентов в тестовых наборах ASR для длинных форм.
Reverb diarization v1 использует архитектуру pyannote 3.0 и имеет 2 слоя LSTM со скрытым размером 256, всего около 2,2 млн параметров, а Reverb diarization v2 использует WavLM вместо функций SincNet в базовой модели pyannote 3.0.
Обе модели диаризации прошли донастройку на 26 000 часах данных с экспертной разметкой.
⚠️ Для локальной установки понадобится Huggingface API KEY
@ai_machinelearning_big_data
#AI #ML #ASR #Diarization #REVAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🔥1
▪️Github
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6❤3🔥2
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6❤2🔥2
https://www.youtube.com/watch?v=3mcs_MDiLwY
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
YouTube
Fireducks: Ускорь Pandas в 20 раз, изменив всего одну строчку кода!!!
💡 Pandas часто бывает медленным из-за ограничений, таких как одноядерные вычисления и громоздкие DataFrame-ы. Но есть простое решение: FireDucks — библиотека с таким же API, как у Pandas, которая решает эти проблемы и значительно ускоряет обработку данных.…
👍7❤1🔥1
💥Начните изучать Machine Learning и Data Science бесплатно — в Skillbox
Получите доступ к 5 модулям курса, познакомьтесь с основами Excel и Python, оцените качество уроков и решите, стоит ли продолжать обучение.
👉Попробуйте Machine Learning в Skillbox бесплатно прямо сейчас и получите дополнительную скидку. Пригодится, если захотите продолжить обучение на полном курсе и максимально сэкономить.
Кстати, на полном курсе вас ждут:
Практика на реальных данных от компаний и экспертов
3 сильных проекта
в портфолио
Помощь в трудоустройстве
Спикеры из Сбера, VK и других топовых компаний
Обратная связь и разбор заданий с наставником
Столько всего полезного — в одном курсе! Самое время попробовать его — бесплатно: https://epic.st/sp-jb?erid=2VtzqvXnKhU
Реклама. ЧОУ ДПО «Образовательные технологии «Скилбокс (Коробка навыков)», ИНН: 9704088880
Получите доступ к 5 модулям курса, познакомьтесь с основами Excel и Python, оцените качество уроков и решите, стоит ли продолжать обучение.
👉Попробуйте Machine Learning в Skillbox бесплатно прямо сейчас и получите дополнительную скидку. Пригодится, если захотите продолжить обучение на полном курсе и максимально сэкономить.
Кстати, на полном курсе вас ждут:
Практика на реальных данных от компаний и экспертов
3 сильных проекта
в портфолио
Помощь в трудоустройстве
Спикеры из Сбера, VK и других топовых компаний
Обратная связь и разбор заданий с наставником
Столько всего полезного — в одном курсе! Самое время попробовать его — бесплатно: https://epic.st/sp-jb?erid=2VtzqvXnKhU
Реклама. ЧОУ ДПО «Образовательные технологии «Скилбокс (Коробка навыков)», ИНН: 9704088880
👎4❤1👍1
▪️Github
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥4❤2
🔥 Опубликован язык программирования Julia 1.11
Опубликован релиз языка программирования Julia 1.11, сочетающего такие качества как высокая производительность, поддержка динамической типизации и встроенные средства для параллельного программирования. Синтаксис Julia близок к MATLAB с заимствованием некоторых элементов из Ruby и Lisp. Метод манипуляции строками напоминает Perl. Код проекта распространяется под лицензией MIT.
Ключевые особенности языка:
- Высокая производительность: одной из ключевых целей проекта является достижение производительности близкой к программам на языке Си. Компилятор Julia основан на наработках проекта LLVM и генерирует эффективный нативный машинный код для многих целевых платформ;
- Поддержка различных парадигм программирования, включая элементы объектно-ориентированного и функционального программирования. Стандартная библиотека предоставляет в том числе функции для асинхронного ввода/вывода, управления процессами, ведения логов, профилирования и управления пакетами;
- Динамическая типизация: язык не требует явного определения типов для переменных по аналогии со скриптовыми языками программирования. Поддерживается интерактивный режим работы;
- Опциональная возможность явного указания типов;
- Синтаксис, превосходно подходящий для численных вычислений, научных расчётов, систем машинного обучения и визуализации данных. Поддержка многих числовых типов данных и средств для распараллеливания вычислений.
- Возможность прямого вызова функций из библиотек на языке Си без дополнительных прослоек.
https://julialang.org/blog/2024/10/julia-1.11-highlights/
@machinelearning_ru
Опубликован релиз языка программирования Julia 1.11, сочетающего такие качества как высокая производительность, поддержка динамической типизации и встроенные средства для параллельного программирования. Синтаксис Julia близок к MATLAB с заимствованием некоторых элементов из Ruby и Lisp. Метод манипуляции строками напоминает Perl. Код проекта распространяется под лицензией MIT.
Ключевые особенности языка:
- Высокая производительность: одной из ключевых целей проекта является достижение производительности близкой к программам на языке Си. Компилятор Julia основан на наработках проекта LLVM и генерирует эффективный нативный машинный код для многих целевых платформ;
- Поддержка различных парадигм программирования, включая элементы объектно-ориентированного и функционального программирования. Стандартная библиотека предоставляет в том числе функции для асинхронного ввода/вывода, управления процессами, ведения логов, профилирования и управления пакетами;
- Динамическая типизация: язык не требует явного определения типов для переменных по аналогии со скриптовыми языками программирования. Поддерживается интерактивный режим работы;
- Опциональная возможность явного указания типов;
- Синтаксис, превосходно подходящий для численных вычислений, научных расчётов, систем машинного обучения и визуализации данных. Поддержка многих числовых типов данных и средств для распараллеливания вычислений.
- Возможность прямого вызова функций из библиотек на языке Си без дополнительных прослоек.
https://julialang.org/blog/2024/10/julia-1.11-highlights/
@machinelearning_ru
julialang.org
Julia 1.11 Highlights
Highlights of the Julia 1.11 release.
🤔8👍6❤3🔥3
Forwarded from Machinelearning
CogVideoX Factory - репозиторий с набором скриптов для эффективного файнтюна моделей семейства CogVideoX (CogVideoX-2B и CogVideoX-5B) с фокусом на оптимизацию VRAM. CogVideoX Factory позволяет выполнять обучение на GPU с 24 GB.
Проект предоставляет гибкость в выборе между LoRA и файнтюном всей модели для задач "text-to-video" и "IMG-to-video".
Чтобы сделать возможным файнтюн на ограниченных ресурсах, CogVideoX использует методы оптимизации:
CogVideoX Factory предлагает сценарии обучения:
train_text_to_video_lora.sh;train_image_to_video_lora.sh;train_text_to_video_sft.sh.⚠️ Предварительная подготовка данных - один из важнейших условий CogVideoX Factory. Скрипт
prepare_dataset.py играет ключевую роль в этом процессе, преобразуя видео и аннотации в латенты и эмбединги. Использование предварительно вычисленных латентов и эмбедингов позволяет не загружать VAE и T5 во время обучения.CogVideoX Factory предлагает подробную документацию, в которой объясняются шаги по подготовке датасетов, настройке параметров обучения, запуску инференса, информацию о требованиях к памяти для каждой модели и конфигурации, помогая принять корректные решения о выборе стратегии обучения.
@ai_machinelearning_big_data
#AI #ML #LoRA #T2V #IMG2V #Finetune
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6❤3🔥2
Forwarded from Machinelearning
Swarm - это экспериментальный фреймворк, разработанный командой OpenAI Solutions, для создания, оркестрации и развертывания многоагентных систем. Фреймворк фокусируется на упрощении координации, запуска, контроля и тестирования агентов.
Основная цель Swarm - продемонстрировать паттерны, описанные в Orchestrating Agents: Handoffs & Routines cookbook.
Фреймворк построен на двух основных абстракциях: агентах (
Agent) и передачах управления (handoffs):Агент - это набор инструкций и функций, который может передавать выполнение другим агентам. Его можно использовать для описания конкретного рабочего процесса или шага (например, последовательность шагов, сложный поиск, одноэтапное преобразование данных и так далее).
Передача управления — это процесс, при котором агент может передать запрос другому агенту, возвращая его в функцию. В процессе передачи управления также происходит обновление переменных контекста, что позволяет вернуть более полный объект
Result.⚠️ Swarm не использует API Assistants и полностью работает на API Chat Completions.
⚠️ Swarm не предназначен для промышленного использования и не имеет официальной поддержки.
# Install from PIP
pip install git+https://github.com/openai/swarm.git
# Usage
from swarm import Swarm, Agent
client = Swarm()
def transfer_to_agent_b():
return agent_b
agent_a = Agent(
name="Agent A",
instructions="You are a helpful agent.",
functions=[transfer_to_agent_b],
)
agent_b = Agent(
name="Agent B",
instructions="Only speak in Haikus.",
)
response = client.run(
agent=agent_a,
messages=[{"role": "user", "content": "I want to talk to agent B."}],
)
print(response.messages[-1]["content"])
@ai_machinelearning_big_data
#AI #ML #Agents #OpenAI #Swarm
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2❤1
This media is not supported in your browser
VIEW IN TELEGRAM
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤2👎1🔥1
⚡️ Выпущена Ollama 0.3.13
Доступны новые модели безопасности! ((Llama Guard 3 от Meta и ShieldGemma от Google)
Работа над новой версии Go runner для повышения надежности и кэширования моделей.
https://github.com/ollama/ollama/releases/tag/v0.3.13
@machinelearning_ru
Доступны новые модели безопасности! ((Llama Guard 3 от Meta и ShieldGemma от Google)
Работа над новой версии Go runner для повышения надежности и кэширования моделей.
https://github.com/ollama/ollama/releases/tag/v0.3.13
@machinelearning_ru
GitHub
Release v0.3.13 · ollama/ollama
New safety models
Llama Guard 3: a series of models by Meta, fine-tuned for content safety classification of LLM inputs and responses.
ShieldGemma: ShieldGemma is set of instruction tuned models f...
Llama Guard 3: a series of models by Meta, fine-tuned for content safety classification of LLM inputs and responses.
ShieldGemma: ShieldGemma is set of instruction tuned models f...
❤3👍3🔥2
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:
МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/python_job_interview
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
АНАЛИЗ Данных: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Linux: t.me/linuxacademiya
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/golang_interview
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/python_job_interview
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
АНАЛИЗ Данных: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Linux: t.me/linuxacademiya
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/golang_interview
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
❤2
▪️Github
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤3🔥2
Forwarded from Machinelearning
Цель модели - сгенерировать 3D-предсказание объема конкретной анатомической структуры на основе входного изображения и визуальной маркировки.
RespLLM использует знания LLM и кросс-модальное внимание для объединения звука и текста чтобы оценить состояние дыхательной системы по аудио.
GlucoBench - комплексныq ресурс для исследований в области прогнозирования уровня глюкозы на основе данных непрерывного мониторинга глюкозы (CGM).
DiffAbXL - это масштабируемая модель диффузии, разработанная для прогнозирования и ранжирования аффинности связывания антител.
DALL-M - платформа, которая использует LLM для создания новых клинически значимых признаков, дополняя наборы данных рентгеновских снимков с учетом контекста.
ClinicalLab - набор инструментов и методологий, предназначенных для оценки и разработки медицинских агентов на основе LLM, которые могут эффективно имитировать процесс клинической диагностики.
Метод, основанный на диффузионных моделях, который позволяет генерировать реалистичные хирургические изображения с полными аннотациями.
MMedAgent предназначен для обработки медицинских изображений разных модальностей и решения задач: grounding, сегментация, классификация, генерация медицинских отчетов (MRG), генерация с извлечением информации (RAG) и визуальные вопросы и ответы (VQA).
Cистема предназначена для решения проблемы идентификации редких заболеваний, используя преимущества как NLP-инструментов, так и LLM.
Конвейер, который улучшает работу LLM в медицинской области, добавляя к ним информацию из медицинских учебников.
Исследование, посвященное поиску эффективных методов реконструкции КТ-изображений с ограниченным числом проекций.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8🔥2🥰2