Здесь приведено подробное описание таких распределений как β-распределение, биномиальное, 𝛘-квадрат, нормальное, Пуассона
К каждому из распределений приведена реализация на Python и примеры использования
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍15❤6🔥4
Здесь собраны ссылки на репозитории этих проектов с датасетами и готовыми моделями
А вот некоторые из этих проектов:
— определение надёжности клиентов для банка
— расшифровка CAPTCHA
— определение: кот или собака на изображении
— определение наличия/отсутствия диабета
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤16👍11🥰2
—
git clone https://github.com/m2dsupsdlclass/lectures-labs
Можно использовать, чтобы освежить теорию перед собеседованием;
здесь подробно разбираются такие темы как:
— рекомендательные системы
— свёрточные нейросети (CNN) и классификация изображений
— рекуррентные нейросети и NLP
— работа с последовательностями
— механизмы внимания и памяти
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍14❤7🔥2
⚡️Лучший способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:
C++ t.me/cpluspluc
Devops: t.me/devOPSitsec
Машинное обучение: t.me/ai_machinelearning_big_data
АНАЛИЗ Данных: t.me/data_analysis_ml
Хакинг: t.me/linuxkalii
Linux: t.me/linuxacademiya
Базы данных: t.me/sqlhub
C#: t.me/csharp_ci
Golang: t.me/Golang_google
Java: t.me/javatg
React: t.me/react_tg
Javascript: t.me/javascriptv
Мобильная разработка: t.me/mobdevelop
Docker: t.me/+0WdB4uvOwCY0Mjdi
Python: t.me/pythonl
Rust: t.me/rust_code
PHP: t.me/phpshka
Android: t.me/android_its
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
Python подготовка с собесу: t.me/python_job_interview
МАТЕМАТИКА: t.me/data_math
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
C++ папка: https://t.me/addlist/CdBs5DLepLJmZjY6
C# папка: https://t.me/addlist/u15AMycxRMowZmRi
Java папка: https://t.me/addlist/ZM3J6oFNAnRlNWU6
FRONTEND папка: https://t.me/addlist/mzMMG3RPZhY2M2Iy
Linux папка: https://t.me/addlist/w4Doot-XBG4xNzYy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
C++ t.me/cpluspluc
Devops: t.me/devOPSitsec
Машинное обучение: t.me/ai_machinelearning_big_data
АНАЛИЗ Данных: t.me/data_analysis_ml
Хакинг: t.me/linuxkalii
Linux: t.me/linuxacademiya
Базы данных: t.me/sqlhub
C#: t.me/csharp_ci
Golang: t.me/Golang_google
Java: t.me/javatg
React: t.me/react_tg
Javascript: t.me/javascriptv
Мобильная разработка: t.me/mobdevelop
Docker: t.me/+0WdB4uvOwCY0Mjdi
Python: t.me/pythonl
Rust: t.me/rust_code
PHP: t.me/phpshka
Android: t.me/android_its
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
Python подготовка с собесу: t.me/python_job_interview
МАТЕМАТИКА: t.me/data_math
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
C++ папка: https://t.me/addlist/CdBs5DLepLJmZjY6
C# папка: https://t.me/addlist/u15AMycxRMowZmRi
Java папка: https://t.me/addlist/ZM3J6oFNAnRlNWU6
FRONTEND папка: https://t.me/addlist/mzMMG3RPZhY2M2Iy
Linux папка: https://t.me/addlist/w4Doot-XBG4xNzYy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
👍8👎2
Здесь раскрываются такие темы как классификация, использование деревьев решений, SVM, обучение без учителя, Survival Analysis
Почти по каждой теме приведены подробные записи с нужной теорией — в целом, очень полезный ресурс для старта в ML
Если интересуют чисто видео, можно сразу сюда
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍17❤5🔥4⚡1
Параллельно затрагиваются такие моменты:
— подготовка данных, удаление выбросов
— обучение ML-модели
— проверка прогнозов модели, оценивание
Используемые данные были взяты из датасета eICU Collaborative Research Database, содержащего обезличенные физиологические данные тяжелобольных пациентов.
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤9👍5🔥3