Machine learning Interview
34K subscribers
1.37K photos
106 videos
13 files
935 links
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.

Вопросы - @notxxx1


@itchannels_telegram -🔥лучшие it каналы

РКН: clck.ru/3FmwRz
Download Telegram
Магистратура — это 2 года жизни и серьезные вложения. Как не ошибиться с выбором?

Приходите на день открытых дверей ИТ-магистратуры Центрального университета — разберем все важные вопросы, которые помогут принять правильное решение.

О чем будем говорить:
→ Как создаются программы магистратуры в ЦУ, что такое продуктовый подход в высшем образовании и как это делает выпускников реально востребованными на рынке
→ Как университет помогает студентам строить карьеру: от менторства до трудоустройства в топовые компании
→ Какие направления есть в ЦУ и как выбрать то, что приведет к вашим карьерным целям
→ Реальные истории студентов: как они поступали, учились и куда пошли работать

Спикеры — практики с опытом в Google, Яндексе, Т-Банке и Visa, которые сейчас отвечают за образовательный опыт студентов ЦУ.

Когда:
Очно 18 ноября с 19:30 до 21:00 (в Москве с экскурсией по кампусу ЦУ).

Регистрируйся по ссылке!

Реклама. АНО ВО "Центральный университет", ИНН 7743418023, erid: 2RanykNYxHY
1
🤖 Хочешь построить своего ИИ-агента? Вот ВСЁ, что нужно!

Один энтузиаст собрал все ресурсы для старта:
📺 видео,
📚 книги и статьи,
🛠️ GitHub-репозитории,
🎓 курсы от Google, OpenAI, Anthropic и других.

Темы:
- LLM (большие языковые модели)
- агенты
- memory/control/planning (MCP)

💡 Всё бесплатно и в одном Google Docs 👉
https://docs.google.com/document/d/1Z5SX89FV6bTy2KKnGGb61xCcS9iPg_fv2USQYi4Wc3g/mobilebasic
👍61
🧭 LinkedIn запускает новую систему поиска людей на базе ИИ — для всех своих 1.3 млрд пользователей.

Как это работает:
- ИИ переводит обычный запрос в связанные навыки и области.
Например, запрос *«curing cancer»* найдёт не только учёных, но и экспертов в онкологии и геномике — и при этом учитывает, насколько человек достижим в вашей сети.

Как обучали:
- Команда вручную собрала “золотой” набор из нескольких сотен–тысяч пар «запрос–профиль».
- На нём сгенерировали синтетические данные и обучили 7B модель-судью.
- Затем дистиллировали её в 1.7B учителя релевантности и отдельных учителей для пользовательских действий (connect, follow).
- Итоговая модель обучалась на мягких оценках через KL-дивергенцию.

Как устроен поиск:
- Первый этап — широкая выборка с помощью 8B модели.
- Второй — компактный ранкер, который обеспечивает точность и при этом дешёв в продакшене.
- Ранкер ужали с 440M до 220M параметров с потерей менее 1% качества — это позволило держать систему дешёвой на таком масштабе.

Технические решения:
- Индексацию пришлось перенести с CPU на GPU — граф людей ведёт себя иначе, чем поиск вакансий.
- RL-сжатие контекста уменьшает ввод почти в 20 раз, а связка ранкера и сжатия даёт ускорение в 10 раз.
- Отдельный LLM-router решает, использовать ли семантический стек или откатиться к классическому лексическому поиску.

Источник: venturebeat.com/ai/inside-linkedins-generative-ai-cookbook-how-it-scaled-people-search-to-1-3
👍125🥴3💊2😱1