Machine learning Interview
34K subscribers
1.37K photos
106 videos
13 files
935 links
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.

Вопросы - @notxxx1


@itchannels_telegram -🔥лучшие it каналы

РКН: clck.ru/3FmwRz
Download Telegram
Google запустил 5-дневный курс по AI-агентам на Kaggle. Их прошлый курс прошли более 420 000 человек.

В новом курсе будут темы:

Агенты и их архитектуры
Интеграция инструментов и MCP
Контекстная инженерия
Оценка качества агентов
От прототипа к продакшну

📅 Даты: 10–14 ноября
🔗 Регистрация: hkaggle.com/learn-guide/5-day-genai

#AI #Agents #Google #Kaggle #Learning
11👍8😁4
Помните, как это было? Кофе, зачетка и возможность просто учиться без спринтов и задач

29 ноября в 16:00 будет Back to Uni — встреча-ностальгия в кампусе Центрального университета для ИТ-сообщества.
Что вас ждет:
— Пары от преподавателей ЦУ — применять знания не обязательно, будет просто интересно.
— Возможность узнать, как и зачем ИТ-специалисту преподавать в вузе, даже если нет опыта или страшно начать.
— Студенческие клубы, разговоры по душам в коридорах и та самая атмосфера, где можно просто вдохновляться.

Пары будут вести руководитель отдела прикладного ML в AI-центре Т-Банка Андрей Мельников, руководитель аналитики международного Яндекс Поиска Роман Васильев, к.м.н., руководитель направления исследований «Мышление и AI» в лаборатории нейронаук и поведения человека Сбера Яна Венерина и другие эксперты.

Это бесплатно. Приходите с однокурсниками — ностальгировать вместе.
🤔5
Вышла новая работа Янна Лекуна о self-supervised обучении: LeJEPA.

Ранее модели типа JEPA требовали разных «хаков», чтобы не допустить коллапса признаков: stop-gradient, predictor-головы, схемы teacher-student.
LeJEPA убирает все эти трюки и заменяет их одним регуляризатором — SIGReg (Sketched Isotropic Gaussian Regularization).

Что делает SIGReg: заставляет векторные представления равномерно распределяться во всех направлениях, формируя «изотропное» облако.
Авторы показывают, что такая форма признаков минимизирует среднюю ошибку на будущих задачах — то есть это математически оптимальная геометрия, а не набор эвристик.

Почему это важно:
- обучение становится стабильнее и проще;
- легко масштабируется до больших моделей (проверено на 1.8B параметров);
- не нужны teacher-student схемы;
- модель можно оценивать без разметки — её loss хорошо коррелирует с качеством на линейном пробере.

Результат: 79% точности линейного пробера на ImageNet-1K при минимуме гиперпараметров.

Работа стабильно обучается на разных архитектурах и масштабах, а сам подход делает self-supervised предобучение более прозрачным и предсказуемым.

Paper: arxiv.org/abs/2511.08544
😁208👍4🥰3
Оценки компаний становятся просто невероятными.

Mira Murati ведёт ранние переговоры о новом раунде инвестиций - по оценке около $50 млрд. Это в 4 раза больше, чем всего четыре месяца назад.

В июле её стартап уже объявил один из крупнейших сид-раундов в истории, привлекая $2 млрд при оценке $12 млрд.

Теперь разговор идёт о пятидесяти.
Безумие.

https://www.bloomberg.com/news/articles/2025-11-13/murati-s-thinking-machines-in-funding-talks-at-50-billion-value
🌚122👍2🥰2
Магистратура — это 2 года жизни и серьезные вложения. Как не ошибиться с выбором?

Приходите на день открытых дверей ИТ-магистратуры Центрального университета — разберем все важные вопросы, которые помогут принять правильное решение.

О чем будем говорить:
→ Как создаются программы магистратуры в ЦУ, что такое продуктовый подход в высшем образовании и как это делает выпускников реально востребованными на рынке
→ Как университет помогает студентам строить карьеру: от менторства до трудоустройства в топовые компании
→ Какие направления есть в ЦУ и как выбрать то, что приведет к вашим карьерным целям
→ Реальные истории студентов: как они поступали, учились и куда пошли работать

Спикеры — практики с опытом в Google, Яндексе, Т-Банке и Visa, которые сейчас отвечают за образовательный опыт студентов ЦУ.

Когда:
Очно 18 ноября с 19:30 до 21:00 (в Москве с экскурсией по кампусу ЦУ).

Регистрируйся по ссылке!

Реклама. АНО ВО "Центральный университет", ИНН 7743418023, erid: 2RanykNYxHY
1
🤖 Хочешь построить своего ИИ-агента? Вот ВСЁ, что нужно!

Один энтузиаст собрал все ресурсы для старта:
📺 видео,
📚 книги и статьи,
🛠️ GitHub-репозитории,
🎓 курсы от Google, OpenAI, Anthropic и других.

Темы:
- LLM (большие языковые модели)
- агенты
- memory/control/planning (MCP)

💡 Всё бесплатно и в одном Google Docs 👉
https://docs.google.com/document/d/1Z5SX89FV6bTy2KKnGGb61xCcS9iPg_fv2USQYi4Wc3g/mobilebasic
👍4
🧭 LinkedIn запускает новую систему поиска людей на базе ИИ — для всех своих 1.3 млрд пользователей.

Как это работает:
- ИИ переводит обычный запрос в связанные навыки и области.
Например, запрос *«curing cancer»* найдёт не только учёных, но и экспертов в онкологии и геномике — и при этом учитывает, насколько человек достижим в вашей сети.

Как обучали:
- Команда вручную собрала “золотой” набор из нескольких сотен–тысяч пар «запрос–профиль».
- На нём сгенерировали синтетические данные и обучили 7B модель-судью.
- Затем дистиллировали её в 1.7B учителя релевантности и отдельных учителей для пользовательских действий (connect, follow).
- Итоговая модель обучалась на мягких оценках через KL-дивергенцию.

Как устроен поиск:
- Первый этап — широкая выборка с помощью 8B модели.
- Второй — компактный ранкер, который обеспечивает точность и при этом дешёв в продакшене.
- Ранкер ужали с 440M до 220M параметров с потерей менее 1% качества — это позволило держать систему дешёвой на таком масштабе.

Технические решения:
- Индексацию пришлось перенести с CPU на GPU — граф людей ведёт себя иначе, чем поиск вакансий.
- RL-сжатие контекста уменьшает ввод почти в 20 раз, а связка ранкера и сжатия даёт ускорение в 10 раз.
- Отдельный LLM-router решает, использовать ли семантический стек или откатиться к классическому лексическому поиску.

Источник: venturebeat.com/ai/inside-linkedins-generative-ai-cookbook-how-it-scaled-people-search-to-1-3
👍114🥴2💊2😱1