Machine learning Interview
37.1K subscribers
1.3K photos
96 videos
13 files
874 links
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.

Вопросы - @notxxx1


@itchannels_telegram -🔥лучшие it каналы

РКН: clck.ru/3FmwRz
Download Telegram
Forwarded from Machinelearning
🚀 DeepSeek-V3.2-Exp - вышла новая экспериментальная версия

Главное:
- Основана на V3.1-Terminus
- Новый механизм Sparse Attention (DSA) → быстрее и дешевле работа с длинными контекстами
- Качество почти без потерь, производительность как у V3.1
- 💰 API подешевел более чем на 50%

📊 V3.1 пока ещё будет доступна до 15 октября 2025.

🔗 Hugging Face: https://huggingface.co/deepseek-ai/DeepSeek-V3.2-Exp)
🔗 Tech Report: https://github.com/deepseek-ai/DeepSeek-V3.2-Exp/blob/main/DeepSeek_V3_2.pdf)
🔗Github: https://github.com/deepseek-ai/DeepSeek-V3.2-Exp/blob/main/DeepSeek_V3_2.pdf

@ai_machinelearning_big_data


#DeepSeek #AI #V32 #SparseAttention #LLM
👍2🤔21
Media is too big
VIEW IN TELEGRAM
⚡️ Сэм Альтман о том, почему энергию на ИИ тратить необходимо

💡 Даже если ИИ будет потреблять сотни мегаватт или гигаватты, это оправдано, если он поможет открыть дешёвый и эффективный ядерный синтез и заменить тысячи ГВт углеродной генерации по всему миру.

🌍 «Мы обречены, если не найдём новые научные решения климатического кризиса. Без ИИ мы делаем это слишком медленно. Давайте попробуем с ним».

🔋 Альтман подчёркивает, что современные модели уже очень эффективны по метрике *watts per token* — и в сравнении с энергозатратами человека на размышления выглядят даже выгоднее.

📜 Он сравнил это с Google: в начале компанию критиковали за энергопотребление, но один поисковый запрос тратил куда меньше ресурсов, чем поездка в библиотеку.

👉 Если ИИ поможет найти дешёвый синтез, польза для климата многократно превысит его энергозатраты.
🤣2517👍92🔥2🌭1