Machine learning Interview
36.8K subscribers
1.31K photos
96 videos
13 files
880 links
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.

Вопросы - @notxxx1


@itchannels_telegram -🔥лучшие it каналы

РКН: clck.ru/3FmwRz
Download Telegram
Forwarded from Machinelearning
🎙️ Qwen3-ASR — универсальная модель распознавания речи!

🟢Поддержка EN/CN + ещё 9 языков: ar, de, en, es, fr, it, ja, ko, pt, ru, zh
🟢 Авто-определение языка
🟢 Модель умеет распознавать речь даже в сложных условиях — когда человек поёт, читает рэп или говорит под фоновую музыку. — WER <8% (ошибки меньше 8 слов на каждые 100)
🟢 Работает даже в шуме, низком качестве и на расстоянии
🟢 В модель можно добавить свои слова/термины/имена и фразы, и она будет их правильно распознавать

API:https://bailian.console.alibabacloud.com/?tab=doc#/doc/?type=model&url=2979031
ModelScope Demo: https://modelscope.cn/studios/Qwen/Qwen3-ASR-Demo
Hugging Face Demo: https://huggingface.co/spaces/Qwen/Qwen3-ASR-Demo
Blog:https://qwen.ai/blog?id=41e4c0f6175f9b004a03a07e42343eaaf48329e7&from=research.latest-advancements-list

@ai_machinelearning_big_data

#ASR #SpeechRecognition #Qwen3 #AI #MachineLearning #DeepLearning #VoiceAI
Please open Telegram to view this post
VIEW IN TELEGRAM
👍119👏2
Как большие языковые модели могут избежать катастрофического забывания во время файнтюнига?

Ответы пишите в комменариях👇

🤔 Проблема
Катастрофическое забывание возникает, когда модель во время дообучения на новых данных теряет уже выученные знания.

Ещё хуже ситуация с коллапсом модели — когда в датасет начинают попадать тексты, сгенерированные самой LLM: это искажает данные, стирает редкие примеры и усиливает ошибки.

Подходы на практике:

1️⃣ LoRA / параметро-эффективное дообучение:
- Обновляются не все веса, а только адаптеры.
- Это снижает риск забывания базовых знаний, сохраняя при этом гибкость для дообучения.
2️⃣Dynamic replay / rehearsal (динамическое повторное смешивание)
- К кастомному датасету подмешивают данные из предобучения.
- Обычно берут в 2–3 раза больше примеров из базового корпуса.
- Так сохраняется «фон» общих знаний модели.
3️⃣ Dataset mixing (смешивание датасетов)
- Не дают модели «зарыться» в узкий домен.
- Сочетание специализированных и базовых данных удерживает баланс.
4️⃣ Variation across epochs (вариативность между эпохами)
- На каждой эпохе берут новые сэмплы из предобученного корпуса.
- Это повышает разнообразие и снижает риск переобучения к конкретному подмножеству.

📌 Как ответить на собеседовании
«Чтобы избежать забывания, используют LoRA (параметро-эффективное дообучение), динамический replay с базовыми данными (в пропорции 1:2 или 1:3), а также варьируют сэмплы из pretrain-корпуса между эпохами. Это сохраняет старые знания и даёт гибкость для новых».

@machinelearning_interview

#AI #LLM #MachineLearning #Forgetting #FineTuning
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13🔥63😘3💯1