Machine learning Interview
34.1K subscribers
1.12K photos
87 videos
14 files
767 links
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.

Вопросы - @notxxx1


@itchannels_telegram -🔥лучшие it каналы

РКН: clck.ru/3FmwRz
Download Telegram
Media is too big
VIEW IN TELEGRAM
🧠 Современные методы статистической теории в машинном обучении

- Видео
- Colab
- Полный курс

@machinelearning_interview
👍92🔥1
⭐️ База ресурсов для поиска удаленно работа

•  Toptal — ИТ фриланс для разработчиков с опытом;
•  Wellfound — различные вакансии для стартапов и фрилансеров;
•  RemoteOK — база для разных профессий;
•  Remotive — удалёнка для айти и маркетинга;
•  Галилео.ру — для инженеров;
•  FlexJobs — для поиска подработок;
•  JustRemote — парт-тайм работа тут;
•  PowerToFly — для женщин в ИТ и бизнесе;
•  RemoteWoman — для женщин, ищущих удалёнку в разных областях;
•  AI Jobs — вакансии в сфере ИИ;
•  Working Nomads — для цифровых кочевников, вакансии в маркетинге и ИТ;
•  Simply Hired — поиск вакансий по всему миру;
•  Angel List — стартапы, удалёнка в технологиях и бизнесе;
•  Virtual Vocations — удалённые вакансии в разных сферах (администрация, маркетинг, ИТ);
•  Remote Work — общий сайт;
•  LinkedIn — ищем удалёнку среди обычных вакансий в профиле;
•  We Work Remotely — удалёнка для разработчиков, дизайнеров и маркетологов;
•  Jobspresso — качественные удалённые вакансии для профессионалов;
•  Jobgether — удалёнка в разных профессиях, от маркетинга до ИТ;
•  Fiverr — фриланс-платформа для самых разных краткосрочных проектов;
•  Daily Remote — база удалённых вакансий в ИТ, маркетинге и других сферах;
•  Crossover — высококачественная удалёнка для разработчиков и менеджеров;
•  Outsourcely — фриланс для разных профессий;
•  Upwork — крупнейшая платформа для фрилансеров, включает ВСЕ профессии;
•  Dribbble — для дизайнеров и креативщиков, в том числе удалённая работа;
•  Monster.com — вакансии по всему миру, в том числе удалённые;
•  Angel.co — стартапы, удалёнка в сфере технологий;
•  Otta — вакансии в стартапах, в том числе удалённые.

@machinelearning_interview
👍104🥰1
Forwarded from Machinelearning
📌 Практическое руководство по "подводным камням" больших языковых моделей с примерами.

Открытый препринт книги Тарсиса Соуза (Tharsis Souza), PhD Лондонсого университета, в которой представлен критический анализ проблем и ограничений, возникающих у инженеров и руководителей технических проектов при разработке приложений на основе LLM.

Цель книги, по заявлению автора – помочь создавать надежные и безопасные системы на основе LLM, избегая распространенных ошибок.

Она ориентирована на разработчиков, технических менеджеров проектов и технических руководителей, стремящихся к углубленному пониманию и преодолению практических трудностей, связанных с внедрением LLM.

В отличие от преобладающего дискурса, акцентирующего возможности LLM, книга сосредоточена на практических сложностях и потенциальных ошибках реализации, предлагая подробное руководство по их преодолению.

В книге рассматриваются проблемы: структурной ненадежности, управления входными данными, тестирования, аспектов безопасности и элайнмента, зависимости от поставщиков и оптимизации затрат.

Книга сопровождается репозиторием с практическими примерами на Python, анализом реальных сценариев и решений.

▶️ Содержание:

🟢Предисловие
🟢О книге
🟢Глава 1: Пробелы в оценках
🟢Глава 2: Структурированный вывод
🟢Глава 3: Управление входными данными
🟢Глава 4: Безопасность
🟢Глава 5: Элайнмент на основе предпочтений
🟢Глава 6: Локальные модели на практике
🟠Глава 7: Парадокс снижения стоимости (не опубликовано)
🟠Глава 8: Границы (не опубликовано)
🟠Приложение: Инструменты и ресурсы (не опубликовано)

🟡Страница проекта
🖥Github.com


@ai_machinelearning_big_data

#AI #ML #LLM #Book #Tutorial
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍51🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
⭐️ Назовите методы ускорения обучения на множестве GPU?

📌 Видео

@machinelearning_interview
👍6🔥52
Forwarded from Machinelearning
🖥 PDF to Podcas- еще один проект преобразования текста в подкасты от NVIDIA

Он предназначенный для преобразования PDF-документов в персонализированный аудиоконтент с использованием технологий генеративного ИИ.

Ключевые компоненты:

- Инструмент преобразования PDF в Markdown: Извлекает содержимое из PDF-файлов и конвертирует его в формат Markdown для дальнейшей обработки.

- Сервис создания монологов или диалогов
: Обрабатывает Markdown-контент, обогащая или структурируя его для создания естественного аудиоконтента.

- Сервис преобразования текста в речь (TTS): Преобразует обработанный контент в высококачественную речь.

Преимущества использования:

- Персонализация: Возможность адаптации решения под специфические потребности организации, включая брендинг, аналитику, реальное время перевода или интерфейс цифрового человека для повышения вовлеченности.
- Конфиденциальность: Решение соответствует требованиям конфиденциальности на всех этапах обработки данных.
- Гибкость: Модульная структура позволяет добавлять дополнительные функции, соответствующие потребностям пользователей.

- Микросервисы NVIDIA NIM используются для развертывания и масштабирования моделей на GPU.

- Модели Llama 3.1 применяются для обработки и генерации текста.

- Langchain используется для обработки и интеграции данных.

- Docling применяется для парсинга документов.

- ElevenLabs предоставляет сервисы преобразования текста в речь.

Лицензирование:
Использование моделей в этом проекте регулируется NVIDIA AI Foundation Models Community License.

Github: https://github.com/NVIDIA-AI-Blueprints/pdf-to-podcast
Project: build.nvidia.com/nvidia/pdf-to-podcast

@ai_machinelearning_big_data


#nim #tts #pdftopodcast
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10🔥32
Forwarded from Machinelearning
🌟 scGPT-spatial: модель для анализа данных о пространственной организации клеток в тканях.

scGPT-spatial - расширенная версия модели scGPT в помощь ученым-биологам для анализа пространственной транскриптомики. Основная цель scGPT-spatial — интегрировать информацию о пространственной локализации клеток и их транскриптомных профилях с знаниями scGPT для расширения понимания организации тканей и взаимодействия клеток в микроокружении.

scGPT-spatial обучалась с с учётом пространственных координат на наборе данных SpatialHuman30M (30 миллионов клеток и спотов из 4 протоколов секвенирования: Visium, Visium HD, MERFISH и Xenium) и использует архитектуру MoE.

В тестах scGPT-spatial показала отличные результаты в задачах кластеризации клеточных типов, деконволюции спотов и импутации генной экспрессии. В экспериментах на интеграцию данных из нескольких слайдов и модальностей модель обошла методы PCA и Seurat v4, достигнув показателя AvgBIO 0.86.

В задаче деконволюции клеточных типов scGPT-spatial превзошла Tangram и Cell2location, со средним Macro F1 в 0.58, а медианный коэффициент корреляции Пирсона в импутации генной экспрессии составил значение 0.6.

Веса модели опубликованы в открытом доступе, а в репозитории проекта на Github - подробная инструкция по настройке окружения для scGPT и ipynb демо-ноутбук инференса.


📌Лицензирование

🟢Код : MIT License.
🟠Модель: CC-BY-4.0 License.


🟡Модель
🟡Техотчет
🖥GitHub

@ai_machinelearning_big_data

#AI #ML #MedML #ScGPT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9🔥53
This media is not supported in your browser
VIEW IN TELEGRAM
Классный сайт для тренировки навыков SQL.

На сайте размещены задачи, которые решаются через базу данных больницы.

Уровни сложности разные — от простых запросов с SELECT до по-настоящему сложных.
Берём на вооружение для практики!

https://www.sql-practice.com/

@machinelearning_interview
18👍6🔥1
🚀Яндекс представил YandexGPT 5 и впервые за 3 года выложил в опенсорс большую языковую модель

Основные детали:

• YandexGPT 5 Pro
— мощная модель нового поколения, уже внедрена в чат с Алисой и доступна через API в Yandex Cloud.

• YandexGPT 5 Lite — 8B модель с контекстным окном 32k токенов, впервые за 3 года опубликована в открытом доступе. Выложена без финального этапа обучения и этических фильтров — идеально для исследований и кастомизации.

Модели открывают широкие возможности для автоматизации бизнес-процессов: от интеллектуальной обработки обращений в контакт-центрах (выделение ключевых моментов, категоризация, суммаризация для отчетов) до создания ИИ-ассистентов для умного поиска по базам знаний.

На сегодняшний день YandexGPT 5 Lite 8B Pretrain в ряде ключевых русскоязычных и англоязычных бенчмарков показывает результаты, превосходящие сопоставимые base-версии моделей Llama и Qwen.

◾️Хабр: https://habr.com/ru/companies/yandex/articles/885218/
◾️HF: https://huggingface.co/yandex/YandexGPT-5-Lite-8B-pretrain

@machinelearning_interview
👍11🔥32
🔥 Aide — это форк Visual Studio Code, созданный для интеграции AI в процесс программирования! Эта среда разработки предоставляет усовершенствованные функции автоматизации, автодополнения и взаимодействия с кодом, делая написание, анализ и рефакторинг кода более удобным и эффективным.

🔐 Лицензия: AGPL-3.0

🖥 Github
Please open Telegram to view this post
VIEW IN TELEGRAM
7👍2🔥1
Forwarded from Machinelearning
✔️ 3 день недели Опенсорса от DeepSeek

⭐️ DeepGEMM — это не просто очередная библиотека для матричных умножений, а настоящий «мастер-класс» по оптимизации FP8 GEMM для новейших GPU.

Проект написан на CUDA и рассчитан исключительно на использование тензорных ядер архитектуры NVIDIA Hopper, что уже само по себе делает его очень современным 🖥

В основе DeepGEMM лежит идея максимально эффективного выполнения операций умножения матриц с использованием 8-битной точности.

Для решения проблемы накопления в FP8 (которое может давать неточные результаты) разработчики внедрили двухуровневое накопление, которое использует возможности CUDA-ядра для повышения точности без потери производительности.

Что действительно радует – это минимализм кода.

Ядро библиотеки представлено всего в одном ключевом модуле, состоящем примерно из 300 строк, что позволяет легко разобраться в его работе и даже внести собственные улучшения.

При этом все ядра компилируются «на лету» с помощью легковесного JIT-компилятора, так что нет долгого этапа сборки при установке.

DeepGEMM поддерживает разные режимы работы: обычные GEMM для плотных моделей, а также группированные операции для моделей типа Mix-of-Experts, где требуется обрабатывать данные в нескольких форматах – как в «континуальном», так и в «masked» виде. Это особенно актуально для современных решений в области глубокого обучения.

Оптимизации, заложенные в DeepGEMM, включают использование новых функций Hopper, таких как Tensor Memory Accelerator (TMA) для асинхронной передачи данных, а также тонкую настройку блоковых размеров и оптимизацию инструкций FFMA для лучшего перекрытия вычислений и загрузки данных. Результаты говорят сами за себя: производительность этой библиотеки на ряде тестовых примеров сравнима или даже превосходит решения, построенные на базе CUTLASS.

DeepGEMM – это лаконичный и эффективный инструмент, который может послужить отличной базой для исследований и практических разработок в области ускорения вычислений для глубокого обучения.

Github


#ai #deepseek #opensource #DeepEP #OpenSourceWeek:
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥51
✔️ OpenAI запускает deep research.

OpenAI полностью откроет улучшенную и обновленную функцию deep research для пользователей ChatGPT Plus, Team, Edu и Enterprise. Вместе с анонсом опубликована карта deep research системы, в которой подробно рассказывается о том, как OpenAI проводили глубокие исследования, оценивали их возможности и риски, а также повышали уровень безопасности.

Новая версия поддерживает обработку изображений и улучшает возможности понимания и цитирования загруженных файлов. Пользователи Plus, Team, Enterprise и Edu могут использовать 10 deep research запросов в месяц, а на тарифе Pro месячная квота составит 120 запросов.
OpenAI в X

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
👍52🔥1
✔️ Визуализация 2х архитектур нейронных сетей: классический «ванильный» Transformer (слева) и вариант с «Mixture of Experts» (справа).

В обоих случаях есть базовые элементы вроде входных эмбеддингов, механизмов самовнимания (self-attention) и последовательного наложения блоков (N слоёв), но в «Mixture of Experts» внутри каждого блока появляется «router» (маршрутизатор).

Этот маршрутизатор решает, какие «эксперты» (специализированные подмодули) должны обработать текущие данные.

Таким образом, в отличие от обычного Transformer’а, где у нас один набор весов на слой, в «Mixture of Experts» несколько разных «экспертов» конкурируют или дополняют друг друга для более гибкой и точной обработки информации.
Please open Telegram to view this post
VIEW IN TELEGRAM
53👍1🤡1
🔥 AIEBootcamp — это курс по разработке и развертыванию LLM-приложений!

🌟 Курс охватывает промпт-инжинеринг, RAG, агентов, тонкую настройку моделей, а также оценку и мониторинг AI-систем, оптимизацию конвейеров и масштабируемость приложений.

🖥 Github
Please open Telegram to view this post
VIEW IN TELEGRAM
👍72🔥2