Artificial Intelligence
47K subscribers
466 photos
2 videos
123 files
390 links
๐Ÿ”ฐ Machine Learning & Artificial Intelligence Free Resources

๐Ÿ”ฐ Learn Data Science, Deep Learning, Python with Tensorflow, Keras & many more

For Promotions: @love_data
Download Telegram
Top 20 AI Concepts You Should Know

1 - Machine Learning: Core algorithms, statistics, and model training techniques.
2 - Deep Learning: Hierarchical neural networks learning complex representations automatically.
3 - Neural Networks: Layered architectures efficiently model nonlinear relationships accurately.
4 - NLP: Techniques to process and understand natural language text.
5 - Computer Vision: Algorithms interpreting and analyzing visual data effectively
6 - Reinforcement Learning: Distributed traffic across multiple servers for reliability.
7 - Generative Models: Creating new data samples using learned data.
8 - LLM: Generates human-like text using massive pre-trained data.
9 - Transformers: Self-attention-based architecture powering modern AI models.
10 - Feature Engineering: Designing informative features to improve model performance significantly.
11 - Supervised Learning: Learns useful representations without labeled data.
12 - Bayesian Learning: Incorporate uncertainty using probabilistic model approaches.
13 - Prompt Engineering: Crafting effective inputs to guide generative model outputs.
14 - AI Agents: Autonomous systems that perceive, decide, and act.
15 - Fine-Tuning Models: Customizes pre-trained models for domain-specific tasks.
16 - Multimodal Models: Processes and generates across multiple data types like images, videos, and text.
17 - Embeddings: Transforms input into machine-readable vector formats.
18 - Vector Search: Finds similar items using dense vector embeddings.
19 - Model Evaluation: Assessing predictive performance using validation techniques.
20 - AI Infrastructure: Deploying scalable systems to support AI operations.

Artificial intelligence Resources: https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E

AI Jobs: https://whatsapp.com/channel/0029VaxtmHsLikgJ2VtGbu1R

Hope this helps you โ˜บ๏ธ
โค5๐Ÿ‘1๐Ÿ”ฅ1
๐Ÿง  Technologies for Data Science, Machine Learning & AI!

๐Ÿ“Š Data Science
โ–ช๏ธ Python โ€“ The go-to language for Data Science
โ–ช๏ธ R โ€“ Statistical Computing and Graphics
โ–ช๏ธ Pandas โ€“ Data Manipulation & Analysis
โ–ช๏ธ NumPy โ€“ Numerical Computing
โ–ช๏ธ Matplotlib / Seaborn โ€“ Data Visualization
โ–ช๏ธ Jupyter Notebooks โ€“ Interactive Development Environment

๐Ÿค– Machine Learning
โ–ช๏ธ Scikit-learn โ€“ Classical ML Algorithms
โ–ช๏ธ TensorFlow โ€“ Deep Learning Framework
โ–ช๏ธ Keras โ€“ High-Level Neural Networks API
โ–ช๏ธ PyTorch โ€“ Deep Learning with Dynamic Computation
โ–ช๏ธ XGBoost โ€“ High-Performance Gradient Boosting
โ–ช๏ธ LightGBM โ€“ Fast, Distributed Gradient Boosting

๐Ÿง  Artificial Intelligence
โ–ช๏ธ OpenAI GPT โ€“ Natural Language Processing
โ–ช๏ธ Transformers (Hugging Face) โ€“ Pretrained Models for NLP
โ–ช๏ธ spaCy โ€“ Industrial-Strength NLP
โ–ช๏ธ NLTK โ€“ Natural Language Toolkit
โ–ช๏ธ Computer Vision (OpenCV) โ€“ Image Processing & Object Detection
โ–ช๏ธ YOLO (You Only Look Once) โ€“ Real-Time Object Detection

๐Ÿ’พ Data Storage & Databases
โ–ช๏ธ SQL โ€“ Structured Query Language for Databases
โ–ช๏ธ MongoDB โ€“ NoSQL, Flexible Data Storage
โ–ช๏ธ BigQuery โ€“ Googleโ€™s Data Warehouse for Large Scale Data
โ–ช๏ธ Apache Hadoop โ€“ Distributed Storage and Processing
โ–ช๏ธ Apache Spark โ€“ Big Data Processing & ML

๐ŸŒ Data Engineering & Deployment
โ–ช๏ธ Apache Airflow โ€“ Workflow Automation & Scheduling
โ–ช๏ธ Docker โ€“ Containerization for ML Models
โ–ช๏ธ Kubernetes โ€“ Container Orchestration
โ–ช๏ธ AWS Sagemaker / Google AI Platform โ€“ Cloud ML Model Deployment
โ–ช๏ธ Flask / FastAPI โ€“ APIs for ML Models

๐Ÿ”ง Tools & Libraries for Automation & Experimentation
โ–ช๏ธ MLflow โ€“ Tracking ML Experiments
โ–ช๏ธ TensorBoard โ€“ Visualization for TensorFlow Models
โ–ช๏ธ DVC (Data Version Control) โ€“ Versioning for Data & Models

React โค๏ธ for more
โค9
๐Ÿ” Machine Learning Cheat Sheet ๐Ÿ”

1. Key Concepts:
- Supervised Learning: Learn from labeled data (e.g., classification, regression).
- Unsupervised Learning: Discover patterns in unlabeled data (e.g., clustering, dimensionality reduction).
- Reinforcement Learning: Learn by interacting with an environment to maximize reward.

2. Common Algorithms:
- Linear Regression: Predict continuous values.
- Logistic Regression: Binary classification.
- Decision Trees: Simple, interpretable model for classification and regression.
- Random Forests: Ensemble method for improved accuracy.
- Support Vector Machines: Effective for high-dimensional spaces.
- K-Nearest Neighbors: Instance-based learning for classification/regression.
- K-Means: Clustering algorithm.
- Principal Component Analysis(PCA)

3. Performance Metrics:
- Classification: Accuracy, Precision, Recall, F1-Score, ROC-AUC.
- Regression: Mean Absolute Error (MAE), Mean Squared Error (MSE), R^2 Score.

4. Data Preprocessing:
- Normalization: Scale features to a standard range.
- Standardization: Transform features to have zero mean and unit variance.
- Imputation: Handle missing data.
- Encoding: Convert categorical data into numerical format.

5. Model Evaluation:
- Cross-Validation: Ensure model generalization.
- Train-Test Split: Divide data to evaluate model performance.

6. Libraries:
- Python: Scikit-Learn, TensorFlow, Keras, PyTorch, Pandas, Numpy, Matplotlib.
- R: caret, randomForest, e1071, ggplot2.

7. Tips for Success:
- Feature Engineering: Enhance data quality and relevance.
- Hyperparameter Tuning: Optimize model parameters (Grid Search, Random Search).
- Model Interpretability: Use tools like SHAP and LIME.
- Continuous Learning: Stay updated with the latest research and trends.

๐Ÿš€ Dive into Machine Learning and transform data into insights! ๐Ÿš€

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

All the best ๐Ÿ‘๐Ÿ‘
โค3
๐Ÿ“ข Last Call!
Make sure to submit your article to the AI Journey* ัonference journal โ€” the deadline is approaching soon!


โฐ Submission closes on 20 August 2025

Selected papers will be published in the scientific journal Doklady Mathematics.

๐Ÿ† Award for the best scientific paper โ€” RUB 1 mln

๐Ÿ“– The journal is:
โ€ข Indexed in major international scientific citation databases
โ€ข Available to a global audience through leading digital libraries

Don't miss this final opportunity:
Submit your paper by 20 August to have a chance to publish your research in the prestigious scientific journal and present it at the AI Journey conference.

Please see the detailed information and submission guidelines on the AI Journeyโ€™s website.

*AI Journey โ€” a major online conference in the field of AI technologies.
๐Ÿ‘1
๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ฅ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ

๐Ÿญ. ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ๐—บ๐—ถ๐—ป๐—ด ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ๐˜€: Master Python, SQL, and R for data manipulation and analysis.

๐Ÿฎ. ๐——๐—ฎ๐˜๐—ฎ ๐— ๐—ฎ๐—ป๐—ถ๐—ฝ๐˜‚๐—น๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฎ๐—ป๐—ฑ ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด: Use Excel, Pandas, and ETL tools like Alteryx and Talend for data processing.

๐Ÿฏ. ๐——๐—ฎ๐˜๐—ฎ ๐—ฉ๐—ถ๐˜€๐˜‚๐—ฎ๐—น๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป: Learn Tableau, Power BI, and Matplotlib/Seaborn for creating insightful visualizations.

๐Ÿฐ. ๐—ฆ๐˜๐—ฎ๐˜๐—ถ๐˜€๐˜๐—ถ๐—ฐ๐˜€ ๐—ฎ๐—ป๐—ฑ ๐— ๐—ฎ๐˜๐—ต๐—ฒ๐—บ๐—ฎ๐˜๐—ถ๐—ฐ๐˜€: Understand Descriptive and Inferential Statistics, Probability, Regression, and Time Series Analysis.

๐Ÿฑ. ๐— ๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ฒ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด: Get proficient in Supervised and Unsupervised Learning, along with Time Series Forecasting.

๐Ÿฒ. ๐—•๐—ถ๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—ง๐—ผ๐—ผ๐—น๐˜€: Utilize Google BigQuery, AWS Redshift, and NoSQL databases like MongoDB for large-scale data management.

๐Ÿณ. ๐— ๐—ผ๐—ป๐—ถ๐˜๐—ผ๐—ฟ๐—ถ๐—ป๐—ด ๐—ฎ๐—ป๐—ฑ ๐—ฅ๐—ฒ๐—ฝ๐—ผ๐—ฟ๐˜๐—ถ๐—ป๐—ด: Implement Data Quality Monitoring (Great Expectations) and Performance Tracking (Prometheus, Grafana).

๐Ÿด. ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ง๐—ผ๐—ผ๐—น๐˜€: Work with Data Orchestration tools (Airflow, Prefect) and visualization tools like D3.js and Plotly.

๐Ÿต. ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ ๐— ๐—ฎ๐—ป๐—ฎ๐—ด๐—ฒ๐—ฟ: Manage resources using Jupyter Notebooks and Power BI.

๐Ÿญ๐Ÿฌ. ๐——๐—ฎ๐˜๐—ฎ ๐—š๐—ผ๐˜ƒ๐—ฒ๐—ฟ๐—ป๐—ฎ๐—ป๐—ฐ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—˜๐˜๐—ต๐—ถ๐—ฐ๐˜€: Ensure compliance with GDPR, Data Privacy, and Data Quality standards.

๐Ÿญ๐Ÿญ. ๐—–๐—น๐—ผ๐˜‚๐—ฑ ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ถ๐—ป๐—ด: Leverage AWS, Google Cloud, and Azure for scalable data solutions.

๐Ÿญ๐Ÿฎ. ๐——๐—ฎ๐˜๐—ฎ ๐—ช๐—ฟ๐—ฎ๐—ป๐—ด๐—น๐—ถ๐—ป๐—ด ๐—ฎ๐—ป๐—ฑ ๐—–๐—น๐—ฒ๐—ฎ๐—ป๐—ถ๐—ป๐—ด: Master data cleaning (OpenRefine, Trifacta) and transformation techniques.

Data Analytics Resources
๐Ÿ‘‡๐Ÿ‘‡
https://t.me/sqlspecialist

Hope this helps you ๐Ÿ˜Š
โค3
โค1
๐Ÿ”… Most important SQL commands
โค8
Useful AI courses for free: ๐Ÿ“ฑ๐Ÿค–

๐Ÿญ. Prompt Engineering Basics:
https://skillbuilder.aws/search?searchText=foundations-of-prompt-engineering&showRedirectNotFoundBanner=true

๐Ÿฎ. ChatGPT Prompts Mastery:
https://deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/

๐Ÿฏ. Intro to Generative AI:
https://cloudskillsboost.google/course_templates/536

๐Ÿฐ. AI Introduction by Harvard:
https://pll.harvard.edu/course/cs50s-introduction-artificial-intelligence-python/2023-05

๐Ÿฑ. Microsoft GenAI Basics:
https://linkedin.com/learning/what-is-generative-ai/generative-ai-is-a-tool-in-service-of-humanity

๐Ÿฒ. Prompt Engineering Pro:
https://learnprompting.org

๐Ÿณ. Googleโ€™s Ethical AI:
https://cloudskillsboost.google/course_templates/554

๐Ÿด. Harvard Machine Learning:
https://pll.harvard.edu/course/data-science-machine-learning

๐Ÿต. LangChain App Developer:
https://deeplearning.ai/short-courses/langchain-for-llm-application-development/

๐Ÿญ๐Ÿฌ. Bing Chat Applications:
https://linkedin.com/learning/streamlining-your-work-with-microsoft-bing-chat

๐Ÿญ๐Ÿญ. Generative AI by Microsoft:
https://learn.microsoft.com/en-us/training/paths/introduction-to-ai-on-azure/

๐Ÿญ๐Ÿฎ. Amazonโ€™s AI Strategy:
https://skillbuilder.aws/search?searchText=generative-ai-learning-plan-for-decision-makers&showRedirectNotFoundBanner=true

๐Ÿญ๐Ÿฏ. GenAI for Everyone:
https://deeplearning.ai/courses/generative-ai-for-everyone/

React โ™ฅ๏ธ for more
Please open Telegram to view this post
VIEW IN TELEGRAM
โค6๐Ÿ”ฅ2
Learn Python & Machine Learning
โค4
Choosing a right parametric test
โค2
Tuple Slicing in Python ๐Ÿ‘†
โค3
Machine Learning Algorithms Cheatsheet โœ…
โค3