Машиннное обучение | Наука о данных Библиотека
16.9K subscribers
768 photos
10 videos
21 files
663 links
админ - @workakkk

@ai_machinelearning_big_data - Machine learning

@itchannels_telegram - 🔥лучшие ит-каналы

@pythonl - Python

@pythonlbooks- python книги📚

@datascienceiot - ml книги📚

№ 5037635661
Download Telegram
🖥 Вайбкодим с GPT-5 как профи — OpenAI выкатили офиц. гайд по работе с моделью. С ним выжмете из нейронки МАКСИМУМ.

1) Будьте предельно ТОЧНЫ и не давайте противоречий — иначе модель запутается.

2) Подбирайте правильный уровень рассуждений (reasoning effort): простое → низкий, сложное → высокий.

3) Структурируйте промпты XML-подобным синтаксисом. GPT-5 лучше держит контекст в таких блоках:

<code_editing_rules>
<guiding_principles>
- Every component should be modular and reusable
</guiding_principles>
<frontend_stack_defaults>
- Styling: TailwindCSS
</frontend_stack_defaults>
</code_editing_rules>


4) Избегайте ультра-жёстких требований. Фразы «будь ПРЕДЕЛЬНО тщателен» → тонна лишнего текста.

5) Давайте ИИ пространство для планирования и саморефлексии. Например, при создании приложений с нуля:

<self_reflection>
- Think of a rubric first
- Deeply analyze each part
- Use rubric to iterate best solution
</self_reflection>


6) Контролируйте «синдром отличника». GPT-5 сам любит усложнять. Чтобы держать в узде:

<persistence>
- Don’t ask human for confirmation
- Make best assumption
- Document it after acting
</persistence>


📌 Полный PDF со всеми деталями — тут
🚀 Генератор/оптимизатор промптов для GPT-5 — тут.
Please open Telegram to view this post
VIEW IN TELEGRAM
6👍4🤔1💩1
👿 26 августа Яндекс проведёт в Санкт-Петербурге Data Dojo: мероприятие для сообщества ML-экспертов

Будем обсуждать востребованные направления машинного обучения, разбирать реальные задачи из соревнований и общаться с руководителями команд, чтобы узнать больше о карьере ML’щика в Яндексе.

Николай Савушкин, руководитель команды рекомендательных технологий в Поиске, расскажет, как устроена персонализация и как работают большие генеративные модели в рекомендательных системах Яндекса. А Алексей Колесов, руководитель команды NLP, поделится, каких успехов за последнее время добилась команда R&D в Яндексе, и какие вызовы стоят перед ними в ближайший год.

Вечером — дискуссия с секретным гостем, а после — afterparty с музыкой и напитками.

Если хотите участвовать, то нужно заполнить анкету до 20 августа.

🪷 В додзё не приходят случайно. Набирайтесь мудрости в сильнейшем ML-комьюнити.
7👍2🔥2
пост - 📉 MIT: 95% компаний, вкладывающих в generative AI, пока не получают ощутимых результатов 😯

📊 Основные данные исследования:
- 150 интервью с топ-менеджерами
- 350 сотрудников в опросе
- 300 публичных кейсов внедрения

⚠️ Проблема — “разрыв обучения”:
Индивидуально чат-боты кажутся магией, но в бизнесе они не адаптируются к данным, правилам и процессам компании.
Результат: хрупкие воркфлоу, шумные ответы и отсутствие влияния на P&L.

💸 Бюджеты распределены неверно:
- Более 50% средств уходит на маркетинг и продажи
- Но реальные эффекты — в бэк-офисе: отказ от аутсорса, сокращение агентств, оптимизация процессов

Где работают внедрения:
- Покупка решений у нишевых вендоров и партнёрство → ~67% успеха
- Внутренние разработки → лишь ~33%
- В финансовом секторе ситуация ещё хуже из-за рисков и регуляций

👥 Влияние на сотрудников:
- Компании не закрывают часть позиций в саппорте и админке (особенно аутсорс)
- Shadow AI используется повсюду, но из-за “скрытого” применения трудно замерить реальную продуктивность и прибыль

👉 Подробности: fortune.com/2025/08/18/mit-report-95-percent-generative-ai-pilots-at-companies-failing-cfo/
🤔32😁2🔥1
Forwarded from Machinelearning
📌Скорость решает все: обзор эффективных архитектур для LLM.

Ландшафт архитектур LLM превратился в настоящий зоопарк. Почти каждую неделю появляются новые методы, обещающие меньший расход памяти и более быстрый инференс. Разобраться в этом становится все сложнее.

Большая группа исследователей выпустила подробный обзор Speed Always Wins, чтобы систематизировать все ключевые инновации в области эффективных архитектур для LLM.

Это не просто очередная статья, а попытка упорядочить и структурировать актуальные подходы, которые решают главную проблему классического трансформера - его квадратичную вычислительную сложность.

Обзор описывает 7 основных направлений.

🟡Линейное моделирование последовательностей.

Здесь авторы разбирают все подходы, которые так или иначе сводят сложность самовнимания к линейной. В эту категорию попадают 3 большие ветви: линейное внимание; линейные RNN, вроде и, конечно, модели на основе пространства состояний (SSM).

🟡Второе и третье направления посвящены идее разреженности.

Разреженное моделирование последовательностей основано на простом принципе: не каждый токен должен общаться с каждым. Здесь выделяются статические подходы (как в Longformer), где паттерны внимания заданы заранее, и динамические, где они определяются на лету в зависимости от контента.

🟡MoE.

Методика, которая уже стала мейнстримом. В МоЕ разреженность применяется не в механизме внимания, а в FFN-слоях, где для каждого токена активируется лишь небольшая часть экспертов, что позволяет наращивать число параметров без пропорционального роста вычислений.

🟡Четвёртый раздел - эффективное полное внимание.

В нем речь идет не об изменении асимптотической сложности, а об ее аппаратной оптимизации. Флагман - FlashAttention.

Есть детальный разбор, как за счет оптимизации обращений к памяти GPU удается кардинально ускорить вычисления, не прибегая к аппроксимациям. Сюда же относятся и групповые механизмы внимания: GQA и MQA.

🟡Гибридные архитектуры.

Это, пожалуй, самый горячий тренд. Его идея в том, чтобы стратегически комбинировать быстрые слои с линейной сложностью и медленные, но мощные слои с полным вниманием.

В обзоре выделяют два типа гибридизации: межслойную, как в Jamba, где разные типы слоев чередуются, и внутрислойную, где в одном слое разные головы могут использовать разные механизмы внимания.

 🟡Диффузионные LLM (DLLM) 
 
 Это неавторегрессионные модели, которые генерируют текст, постепенно восстанавливая его из шума. Их главная фишка в параллельном декодировании, что дает ощутимое ускорение инференса.
 
 В конце обзора есть анализ применения всех этих архитектур в разных модальностях - CV и аудио.


Так что, если хотите быстро разобраться в базовых методах, которые будут двигать дизайн LLM в ближайшее время, а двигаться он будет в сторону микширования алгоритмов, систем и железа, этот обзор - мастрид.


🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Architectures
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
6👍1🔥1
🧪 Новый бенчмарк показывает, как LLM-агенты ломаются на реальных задачах

- Лучший результат — лишь 43,72% успеха у GPT-5.
- Использован Model Context Protocol (MCP) — стандарт, позволяющий ИИ подключаться к приложениям, получать данные и выполнять действия.
- Проверка шла на реальных серверах: 6 доменов, 11 сервисов, 231 задача (карты, GitHub, финансы, 3D-дизайн, браузер, веб-поиск).
- Оценка не через модель-судью, а через запуск:
- формат (структура ответа),
- статический чек (фиксированные факты),
- динамический чек (актуальные данные).

⚠️ Что выяснилось:
- Формат агенты соблюдают, но проваливаются по содержанию → слабые места: рассуждение и поиск данных.
- Долгие диалоги раздувают контекст, многошаговые сценарии рушатся.
- Часто неверно используют инструменты (например, вызывают API акций с одинаковой датой начала и конца).
- Подключение лишних сервисов даёт шум и снижает точность.
- Даже «enterprise-агенты» не обгоняют простую схему ReAct.

🔎 Вывод: интеграция LLM-агентов с реальными системами пока очень хрупкая.
MCP-Universe предлагает прозрачный способ измерять эти сбои и улучшать качество работы.

📄 Статья: https://arxiv.org/abs/2508.14704
5👍3🔥3
📖 Вечернее чтение

Команда из DeepMind подготовила отличный материал о том, что нужно знать о работе с GPU.

- Разбор архитектуры NVIDIA GPU: SM, Tensor Cores, кеши, HBM.
- Сравнение GPU и TPU: гибкость против специализированной мощности.
- Как устроены GPU-кластеры и коллективные коммуникации.
- Roofline-анализ масштабирования LLM: data, tensor, expert, pipeline parallelism.

🔥 Если вы работаете с масштабированием моделей - мастрид.

👉 https://jax-ml.github.io/scaling-book/gpus/

@data_analysis_ml
5👍5🔥3
📌Приглашаем вас на три бесплатных вебинара курса «ML для финансового анализа»

💎Вебинар №1: «Инструменты тестирования торговых стратегий»

27 августа в 20:00 мск

🔹На вебинаре:
- Познакомитесь с инструментами для backtesting’а: от pandas до backtrader и backtesting.
-Узнаете про метрики оценки: доходность, просадка, Sharpe ratio
- Покажем ошибки при тестировании и как их избежать.
- Практика по тестированию простой стратегии и анализу ее метрик.

💎Вебинар №2: «Введение в технический анализ: построение торговой стратегии»

4 сентября в 20:00 мск

🔹На вебинаре:
-Узнаете архитектурное решение локального торгового робота
- Познакомитесь с понятием технического анализа
- Практика с актуальными инструментами
- Построения индикаторов на практике
- Первая стратегия на тех. анализе

💎Вебинар №3: «Работа с торговой площадкой ByBit»

17 сентября в 20:00 мск

🔹На вебинаре:
- Обзор возможностей платформы ByBit: типы ордеров, торговые пары.
- Разбор основных принципов работы с API ByBit: авторизация, получение котировок, выставление ордеров.
- Напишем простой торговый скрипт на Python и протестируем его на демо-аккаунте.

🎁Участники вебинаров получат подарки на почту

Регистрация на вебинары ➡️ OTUS.RU

Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.
2
📉 The Hidden Cost of Readability

Учёные проверили простой приём: убрать из кода *всё форматирование* перед подачей в LLM — и оказалось, что это экономит в среднем 24,5% входных токенов, при этом точность моделей почти не падает.

🔎 Почему так работает
- Отступы, пробелы и переносы строк помогают людям, но заставляют модель платить больше за каждый токен.
- Они удаляли только косметику, сохраняя смысл программы (контроль через сравнение AST).
- Тест: задача Fill-in-the-Middle на Java, C++, C# и Python.

📊 Результаты
- Большие модели почти не теряют в качестве, маленькие слегка «шатаются».
- В Python экономия меньше, так как пробелы — часть синтаксиса.
- Интересно: даже если на вход подать «смятый» код, модели всё равно печатают красиво отформатированный вывод. Поэтому экономия на выходе мала.

Решение
- Явный промпт «выводи без форматирования» или лёгкий дообучение на неформатированных примерах.
- В таком случае выходные токены сокращаются ещё на 25–36%, а pass-rate остаётся прежним.
- Авторы предлагают утилиту: она стирает форматирование перед инференсом и восстанавливает после — человек читает аккуратный код, а модель тратит меньше.

📑 Статья: *The Hidden Cost of Readability: How Code Formatting Silently Consumes Your LLM Budget*

👉 arxiv.org/abs/2508.13666
2🔥2