Машиннное обучение | Наука о данных Библиотека
16.7K subscribers
672 photos
4 videos
20 files
599 links
админ - @workakkk

@ai_machinelearning_big_data - Machine learning

@itchannels_telegram - 🔥лучшие ит-каналы

@pythonl - Python

@pythonlbooks- python книги📚

@datascienceiot - ml книги📚

№ 5037635661
Download Telegram
Мультиагентные системы — главный тренд 2025

Модели, работающие в команде, способны разбивать задачи, делиться ролями и принимать коллективные решения. Главное — задать понятную цель, иметь данные и четкие метрики. Пока технологии только догоняют идею, но потенциал у подхода — взрывной.

6 июня на True Tech Day 2025 Иван Оселедец — доктор физико-математических наук, профессор РАН и генеральный директор AIRI — подробно расскажет, почему мультиагентные системы становятся следующим этапом эволюции ИИ.

После его доклада в программе — максимум практики и фана:

— батл по взлому Tesla Model X
— воркшоп по созданию ИИ-ассистента
— HR-хаб с рекомендация по карьерному треку
— мастер-класс по сборке серверов
— нетворкинг с экспертами из бигтеха

…а еще after-party со звездным лайн-апом и призы. Зарабатывай баллы, получай мерч и знакомься!

Ждем тебя и коллег 6 июня в МТС Live Холл.
Участие бесплатное, но мест мало. Регистрируйся по ссылке.
💡 The Entropy Mechanism of Reinforcement Learning for Reasoning Language Models

Почему политики в RL "зависают" и как это исправить?

Когда мы обучаем большие языковые модели (LLMs) через обучение с подкреплением (RL), есть одна большая проблема:

📉 Политика слишком рано "замыкается" и перестаёт исследовать новые действия.

Это называют коллапсом энтропии — модель быстро теряет разнообразие в своих решениях и больше не пробует что-то новое.

🔬 Учёные обнаружили:

🔗 Есть закономерность:
Когда энтропия падает, качество (reward) тоже перестаёт расти.

Формула:

R = -a * e^H + b

То есть: меньше разнообразия → предсказуемый потолок качества.

🤔 Почему так происходит?

Потому что в RL-алгоритмах (как Policy Gradient) модель усиливает те действия, которые уже приносят награду, и почти не обновляет остальное.

В результате:
- Энтропия падает
- Модель перестаёт исследовать
- Качество "застывает"

💡 Как это исправить?

Авторы предложили 2 простых приёма:

1. Clip-Cov — ограничить обновление токенов, где политика слишком уверена
2. KL-Cov — добавить штраф на такие уверенные токены, чтобы сохранить разнообразие

📈 Результат:
Эти методы удерживают политику в исследовательском режиме дольше и позволяют достичь лучших результатов на практике.

🔗 Если ты работаешь с RLHF, LLM или reasoning — это отличная идея для устойчивого масштабирования.

📌 Читать
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Как автоматизировать создание миллионов карточек товаров и сэкономить тысячи часов?

Саша Воронцов, руководитель службы ML в Маркете, рассказал, как они внедрили YandexGPT, чтобы:
— Извлекать характеристики из хаотичных описаний с точностью 98%.
— Сократить ручную работу продавцов в разы.
— Ускорить вывод товаров в продажу даже при постоянных изменениях категорий.

Главный результат: вместо громоздкого «Формализатора» — гибкая модель, которая учится на лету и почти не требует ручных правок.

📌 Хотите детали? Читайте статью Саши — там всё о борьбе с опечатками продавцов, обучении нейросети и планах по автоматическому исправлению ошибок в карточках.
Forwarded from Just Xor
Physics-based Deep Learning

Это практическое руководство по применению глубокого обучения в физическом моделировании.

Вместо сухой теории — акцент на реальных задачах: каждую концепцию сопровождает интерактивный Jupyter-ноутбук, чтобы можно было сразу пробовать и понимать.

📌 Что внутри:

🔹 Физически-осмысленные функции потерь
🔹 Дифференцируемые симуляции
🔹 Диффузионные модели для генеративной физики
🔹 Обучение с подкреплением в задачах динамики
🔹 Современные архитектуры нейросетей для симуляций
🔹 Связь с научными foundation-моделями нового поколения

🧠 Это книга о том, как AI меняет подход к вычислительной науке: от классических симуляций — к гибриду машинного обучения и физики.

🌍 Идеально подойдёт исследователям, инженерам, data scientists и всем, кто работает на стыке науки и ИИ.

#DeepLearning #Physics #ScientificML #DifferentiableSimulation #AI #FoundationModels

https://arxiv.org/pdf/2109.05237
📚 Physics-based Deep Learning

Это практическое руководство по применению глубокого обучения в физическом моделировании. Вместо сухой теории — акцент на реальных задачах: каждую концепцию сопровождает интерактивный Jupyter-ноутбук, чтобы можно было сразу пробовать и понимать.

📌 Что внутри:

🔹 Физически-осмысленные функции потерь
🔹 Дифференцируемые симуляции
🔹 Диффузионные модели для генеративной физики
🔹 Обучение с подкреплением в задачах динамики
🔹 Современные архитектуры нейросетей для симуляций
🔹 Связь с научными foundation-моделями нового поколения

🧠 Это книга о том, как AI меняет подход к вычислительной науке: от классических симуляций — к гибриду машинного обучения и физики.

🌍 Идеально подойдёт исследователям, инженерам, data scientists и всем, кто работает на стыке науки и ИИ.

#DeepLearning #Physics #ScientificML #DifferentiableSimulation #AI #FoundationModels

📚 Книга

@machinelearning_books
Please open Telegram to view this post
VIEW IN TELEGRAM
Работаете в Data Science и хотите стать Middle+? Проверьте свои знания быстрым тестом — и узнайте, готовы ли к следующему шагу!

🔥 ПРОЙТИ ТЕСТ: ссылка

Пройдите тест и проверьте, готовы ли вы к повышению квалификации на курсе «Machine Learning. Advanced». В программе — AutoML, Байесовские методы, обучение с подкреплением и многое другое. Вы научитесь деплоить модели, собирать end-to-end пайплайны и претендовать на позиции Middle+/Senior ML Engineer.

🎁 Успешное прохождение теста — ваш пропуск к записям открытых уроков и скидке на большое обучение.

👉 Оцените свой уровень прямо сейчас: ссылка

Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.
🧠 SHAP — как понять, что “думает” ваша модель на деревьях решений

Если используешь XGBoost, LightGBM или Random Forest — не обязательно работать вслепую.
SHAP (SHapley Additive exPlanations) помогает объяснить, почему модель приняла то или иное решение.

🔍 В кратком гайде от Machine Learning Mastery разобрано:
• как посчитать вклад каждого признака в конкретное предсказание
• как визуализировать это через summary и waterfall-графики
• как сравнить SHAP с обычной feature importance
• и почему SHAP — это больше, чем просто красивая картинка

📊 Особенно полезно, если работаешь в финтехе, медицине или любой сфере, где важно обосновывать модельные выводы.

📖 Гайд

@machinelearning_books
🔢 PGVector: векторный поиск прямо в PostgreSQL — гайд

Если ты работаешь с embedding'ами (OpenAI, HuggingFace, LLMs) и хочешь делать семантический поиск в SQL — тебе нужен pgvector. Это расширение позволяет сохранять и сравнивать векторы прямо внутри PostgreSQL.

📦 Установка PGVector (Linux)


git clone --branch v0.8.0 https://github.com/pgvector/pgvector.git
cd pgvector
make
sudo make install


Или просто:
• macOS: brew install pgvector
• Docker: pgvector/pgvector:pg17
• PostgreSQL 13+ (через APT/YUM)

🔌 Подключение расширения в базе


CREATE EXTENSION vector;


После этого ты можешь использовать новый тип данных vector.

🧱 Пример использования

Создаём таблицу:


CREATE TABLE items (
id bigserial PRIMARY KEY,
embedding vector(3)
);


Добавляем данные:


INSERT INTO items (embedding) VALUES ('[1,2,3]'), ('[4,5,6]');


Поиск ближайшего вектора:


SELECT * FROM items
ORDER BY embedding <-> '[3,1,2]'
LIMIT 5;


🧠 Операторы сравнения

PGVector поддерживает несколько видов расстояний между векторами:

- <-> — L2 (евклидово расстояние)
- <#> — скалярное произведение
- <=> — косинусное расстояние
- <+> — Manhattan (L1)
- <~> — Хэммингово расстояние (для битовых векторов)
- <%> — Жаккар (для битовых векторов)

Также можно усреднять вектора:


SELECT AVG(embedding) FROM items;


🚀 Индексация для быстрого поиска

HNSW (лучшее качество):


CREATE INDEX ON items USING hnsw (embedding vector_l2_ops);


Параметры можно настраивать:


SET hnsw.ef_search = 40;


#### IVFFlat (быстрее создаётся, но чуть менее точный):


CREATE INDEX ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 100);
SET ivfflat.probes = 10;


🔍 Проверка версии и обновление


SELECT extversion FROM pg_extension WHERE extname='vector';
ALTER EXTENSION vector UPDATE;


📌 Особенности

- Работает с PostgreSQL 13+
- Поддержка до 2000 измерений
- Расширяемый синтаксис
- Можно использовать DISTINCT, JOIN, GROUP BY, ORDER BY и агрегации
- Подходит для RAG-пайплайнов, NLP и встраивания LLM-поиска в обычные SQL-приложения

🔗 Подробнее

💡 Храни embedding'и прямо в PostgreSQL — и делай семантический поиск без внешних векторных БД.
📄 Это исследование оценивает 14 техник prompt-инжиниринга для 10 задач в области Software Engineering, используя 4 разных LLM.

Методология 🔧:

● Эффективность оценивалась с помощью метрик: Accuracy, F1 score, CodeBLEU, BLEU.

● Анализировались лингвистические характеристики prompt'ов: лексическое разнообразие, число токенов и их связь с качеством ответа.

● Применялась контрастивная интерпретация, чтобы выявить ключевые факторы, влияющие на результативность техник.

📌 Выводы помогут понять, какие типы prompt'ов реально работают в инженерных задачах и почему.

Читать
📚 9 AI-гайдов от OpenAI, Google и Anthropic

🚀 Всё — про агентов, промпты, бизнес и реальные use-case’ы. Сохрани себе!

1. AI в бизнесе (OpenAI)
📄 https://cdn.openai.com/business-guides-and-resources/ai-in-the-enterprise.pdf

2. Практика: как строить агентов (OpenAI)
📄 https://cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf

3. Prompting 101 (Google)
📄 https://services.google.com/fh/files/misc/gemini-for-google-workspace-prompting-guide-101.pdf

4. Как масштабировать AI use-case’ы (OpenAI)
📄 https://cdn.openai.com/business-guides-and-resources/identifying-and-scaling-ai-use-cases.pdf

5. Building Effective Agents (Anthropic)
🔗 https://www.anthropic.com/engineering/building-effective-agents

6. Prompt Engineering (Anthropic)
🔗 https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/overview

7. Agents Companion (whitepaper)
📄 https://kaggle.com/whitepaper-agent-companion

8. 601 AI Use Cases (Google)
📄 https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders

9. Prompt Engineering от Google
📄 https://kaggle.com/whitepaper-prompt-engineering

Лучшие практики от лидеров индустрии.
🔥 Успех в IT = скорость + знания + окружение

Здесь ты найдёшь всё это — коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!

AI: t.me/ai_machinelearning_big_data
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Собеседования DS: t.me/machinelearning_interview
C++ t.me/cpluspluc
Docker: t.me/DevopsDocker
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/java_library
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat

💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy

Подпишись, если хочешь быть в числе тех, кого зовут в топовые проекты!
Сохраняйте шпаргалку по структурам данных
📘 «Компьютерное зрение коротко и ясно» — книга, которую вы действительно прочитаете

Эта книга охватывает основы computer vision с точки зрения обработки изображений и машинного обучения. Цель — не просто объяснить, а сформировать интуицию у читателя. В книге много наглядных визуализаций и минимум лишних слов.

👥 Для кого:
• студенты бакалавриата и магистратуры, которые только входят в область
• практики, которым нужен быстрый и содержательный обзор

📏 Идея была простой: написать небольшую книгу с максимумом пользы — по 5 страниц на главу, только с самыми важными идеями.
Но… увы, и это не удалось — тема слишком широка, чтобы уместиться в малый формат.


📚 Получилось то, что нужно: сильная, визуальная и сжатая книга по компьютерному зрению, которую не страшно открыть и приятно дочитать.

✔️ Книга

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM