1.57K subscribers
577 photos
1 file
949 links
Don't miss a day to solve the problem
My leetcode graph - https://leetcode.com/SamoylenkoDmitry/
Download Telegram
https://leetcode.com/problems/longest-path-with-different-adjacent-characters/
2246. Longest Path With Different Adjacent Characters
Hard
1.1K
25
Companies

You are given a tree (i.e. a connected, undirected graph that has no cycles) rooted at node 0 consisting of n nodes numbered from 0 to n - 1. The tree is represented by a 0-indexed array parent of size n, where parent[i] is the parent of node i. Since node 0 is the root, parent[0] == -1.

You are also given a string s of length n, where s[i] is the character assigned to node i.

Return the length of the longest path in the tree such that no pair of adjacent nodes on the path have the same character assigned to them.



Example 1:

Input: parent = [-1,0,0,1,1,2], s = "abacbe"
Output: 3
Explanation: The longest path where each two adjacent nodes have different characters in the tree is the path: 0 -> 1 -> 3. The length of this path is 3, so 3 is returned.
It can be proven that there is no longer path that satisfies the conditions.

Example 2:

Input: parent = [-1,0,0,0], s = "aabc"
Output: 3
Explanation: The longest path where each two adjacent nodes have different characters is the path: 2 -> 0 -> 3. The length of this path is 3, so 3 is returned.



Constraints:

n == parent.length == s.length
1 <= n <= 105
0 <= parent[i] <= n - 1 for all i >= 1
parent[0] == -1
parent represents a valid tree.
s consists of only lowercase English letters.
https://leetcode.com/problems/lexicographically-smallest-equivalent-string/
1061. Lexicographically Smallest Equivalent String
Medium
1K
76
Companies

You are given two strings of the same length s1 and s2 and a string baseStr.

We say s1[i] and s2[i] are equivalent characters.

For example, if s1 = "abc" and s2 = "cde", then we have 'a' == 'c', 'b' == 'd', and 'c' == 'e'.

Equivalent characters follow the usual rules of any equivalence relation:

Reflexivity: 'a' == 'a'.
Symmetry: 'a' == 'b' implies 'b' == 'a'.
Transitivity: 'a' == 'b' and 'b' == 'c' implies 'a' == 'c'.

For example, given the equivalency information from s1 = "abc" and s2 = "cde", "acd" and "aab" are equivalent strings of baseStr = "eed", and "aab" is the lexicographically smallest equivalent string of baseStr.

Return the lexicographically smallest equivalent string of baseStr by using the equivalency information from s1 and s2.



Example 1:

Input: s1 = "parker", s2 = "morris", baseStr = "parser"
Output: "makkek"
Explanation: Based on the equivalency information in s1 and s2, we can group their characters as [m,p], [a,o], [k,r,s], [e,i].
The characters in each group are equivalent and sorted in lexicographical order.
So the answer is "makkek".

Example 2:

Input: s1 = "hello", s2 = "world", baseStr = "hold"
Output: "hdld"
Explanation: Based on the equivalency information in s1 and s2, we can group their characters as [h,w], [d,e,o], [l,r].
So only the second letter 'o' in baseStr is changed to 'd', the answer is "hdld".

Example 3:

Input: s1 = "leetcode", s2 = "programs", baseStr = "sourcecode"
Output: "aauaaaaada"
Explanation: We group the equivalent characters in s1 and s2 as [a,o,e,r,s,c], [l,p], [g,t] and [d,m], thus all letters in baseStr except 'u' and 'd' are transformed to 'a', the answer is "aauaaaaada".



Constraints:

1 <= s1.length, s2.length, baseStr <= 1000
s1.length == s2.length
s1, s2, and baseStr consist of lowercase English letters.
https://leetcode.com/problems/number-of-good-paths/
2421. Number of Good Paths
Hard
924
43
Companies

There is a tree (i.e. a connected, undirected graph with no cycles) consisting of n nodes numbered from 0 to n - 1 and exactly n - 1 edges.

You are given a 0-indexed integer array vals of length n where vals[i] denotes the value of the ith node. You are also given a 2D integer array edges where edges[i] = [ai, bi] denotes that there exists an undirected edge connecting nodes ai and bi.

A good path is a simple path that satisfies the following conditions:

The starting node and the ending node have the same value.
All nodes between the starting node and the ending node have values less than or equal to the starting node (i.e. the starting node's value should be the maximum value along the path).

Return the number of distinct good paths.

Note that a path and its reverse are counted as the same path. For example, 0 -> 1 is considered to be the same as 1 -> 0. A single node is also considered as a valid path.



Example 1:

Input: vals = [1,3,2,1,3], edges = [[0,1],[0,2],[2,3],[2,4]]
Output: 6
Explanation: There are 5 good paths consisting of a single node.
There is 1 additional good path: 1 -> 0 -> 2 -> 4.
(The reverse path 4 -> 2 -> 0 -> 1 is treated as the same as 1 -> 0 -> 2 -> 4.)
Note that 0 -> 2 -> 3 is not a good path because vals[2] > vals[0].

Example 2:

Input: vals = [1,1,2,2,3], edges = [[0,1],[1,2],[2,3],[2,4]]
Output: 7
Explanation: There are 5 good paths consisting of a single node.
There are 2 additional good paths: 0 -> 1 and 2 -> 3.

Example 3:

Input: vals = [1], edges = []
Output: 1
Explanation: The tree consists of only one node, so there is one good path.



Constraints:

n == vals.length
1 <= n <= 3 * 104
0 <= vals[i] <= 105
edges.length == n - 1
edges[i].length == 2
0 <= ai, bi < n
ai != bi
edges represents a valid tree.
https://leetcode.com/problems/insert-interval/
57. Insert Interval
Medium
6.9K
483
Companies

You are given an array of non-overlapping intervals intervals where intervals[i] = [starti, endi] represent the start and the end of the ith interval and intervals is sorted in ascending order by starti. You are also given an interval newInterval = [start, end] that represents the start and end of another interval.

Insert newInterval into intervals such that intervals is still sorted in ascending order by starti and intervals still does not have any overlapping intervals (merge overlapping intervals if necessary).

Return intervals after the insertion.



Example 1:

Input: intervals = [[1,3],[6,9]], newInterval = [2,5]
Output: [[1,5],[6,9]]

Example 2:

Input: intervals = [[1,2],[3,5],[6,7],[8,10],[12,16]], newInterval = [4,8]
Output: [[1,2],[3,10],[12,16]]
Explanation: Because the new interval [4,8] overlaps with [3,5],[6,7],[8,10].



Constraints:

0 <= intervals.length <= 104
intervals[i].length == 2
0 <= starti <= endi <= 105
intervals is sorted by starti in ascending order.
newInterval.length == 2
0 <= start <= end <= 105
https://leetcode.com/problems/flip-string-to-monotone-increasing/
926. Flip String to Monotone Increasing
Medium
2.7K
114
Companies

A binary string is monotone increasing if it consists of some number of 0's (possibly none), followed by some number of 1's (also possibly none).

You are given a binary string s. You can flip s[i] changing it from 0 to 1 or from 1 to 0.

Return the minimum number of flips to make s monotone increasing.



Example 1:

Input: s = "00110"
Output: 1
Explanation: We flip the last digit to get 00111.

Example 2:

Input: s = "010110"
Output: 2
Explanation: We flip to get 011111, or alternatively 000111.

Example 3:

Input: s = "00011000"
Output: 2
Explanation: We flip to get 00000000.



Constraints:

1 <= s.length <= 105
s[i] is either '0' or '1'.
https://leetcode.com/problems/maximum-sum-circular-subarray/
918. Maximum Sum Circular Subarray
Medium
4.5K
199
Companies

Given a circular integer array nums of length n, return the maximum possible sum of a non-empty subarray of nums.

A circular array means the end of the array connects to the beginning of the array. Formally, the next element of nums[i] is nums[(i + 1) % n] and the previous element of nums[i] is nums[(i - 1 + n) % n].

A subarray may only include each element of the fixed buffer nums at most once. Formally, for a subarray nums[i], nums[i + 1], ..., nums[j], there does not exist i <= k1, k2 <= j with k1 % n == k2 % n.



Example 1:

Input: nums = [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3.

Example 2:

Input: nums = [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10.

Example 3:

Input: nums = [-3,-2,-3]
Output: -2
Explanation: Subarray [-2] has maximum sum -2.



Constraints:

n == nums.length
1 <= n <= 3 * 104
-3 * 104 <= nums[i] <= 3 * 104
https://leetcode.com/problems/subarray-sums-divisible-by-k/
974. Subarray Sums Divisible by K
Medium
4.4K
173
Companies

Given an integer array nums and an integer k, return the number of non-empty subarrays that have a sum divisible by k.

A subarray is a contiguous part of an array.



Example 1:

Input: nums = [4,5,0,-2,-3,1], k = 5
Output: 7
Explanation: There are 7 subarrays with a sum divisible by k = 5:
[4, 5, 0, -2, -3, 1], [5], [5, 0], [5, 0, -2, -3], [0], [0, -2, -3], [-2, -3]

Example 2:

Input: nums = [5], k = 9
Output: 0



Constraints:

1 <= nums.length <= 3 * 104
-104 <= nums[i] <= 104
2 <= k <= 104
https://leetcode.com/problems/non-decreasing-subsequences/
491. Non-decreasing Subsequences
Medium
2.1K
173
Companies

Given an integer array nums, return all the different possible non-decreasing subsequences of the given array with at least two elements. You may return the answer in any order.



Example 1:

Input: nums = [4,6,7,7]
Output: [[4,6],[4,6,7],[4,6,7,7],[4,7],[4,7,7],[6,7],[6,7,7],[7,7]]

Example 2:

Input: nums = [4,4,3,2,1]
Output: [[4,4]]



Constraints:

1 <= nums.length <= 15
-100 <= nums[i] <= 100
https://leetcode.com/problems/restore-ip-addresses/
93. Restore IP Addresses
Medium
3.8K
693
Companies

A valid IP address consists of exactly four integers separated by single dots. Each integer is between 0 and 255 (inclusive) and cannot have leading zeros.

For example, "0.1.2.201" and "192.168.1.1" are valid IP addresses, but "0.011.255.245", "192.168.1.312" and "192.168@1.1" are invalid IP addresses.

Given a string s containing only digits, return all possible valid IP addresses that can be formed by inserting dots into s. You are not allowed to reorder or remove any digits in s. You may return the valid IP addresses in any order.



Example 1:

Input: s = "25525511135"
Output: ["255.255.11.135","255.255.111.35"]

Example 2:

Input: s = "0000"
Output: ["0.0.0.0"]

Example 3:

Input: s = "101023"
Output: ["1.0.10.23","1.0.102.3","10.1.0.23","10.10.2.3","101.0.2.3"]



Constraints:

1 <= s.length <= 20
s consists of digits only.
https://leetcode.com/problems/palindrome-partitioning/
131. Palindrome Partitioning
Medium
9.4K
307
Companies

Given a string s, partition s such that every
substring
of the partition is a
palindrome
. Return all possible palindrome partitioning of s.



Example 1:

Input: s = "aab"
Output: [["a","a","b"],["aa","b"]]

Example 2:

Input: s = "a"
Output: [["a"]]



Constraints:

1 <= s.length <= 16
s contains only lowercase English letters.
https://leetcode.com/problems/find-the-town-judge/
997. Find the Town Judge
Easy
4.6K
355
Companies

In a town, there are n people labeled from 1 to n. There is a rumor that one of these people is secretly the town judge.

If the town judge exists, then:

The town judge trusts nobody.
Everybody (except for the town judge) trusts the town judge.
There is exactly one person that satisfies properties 1 and 2.

You are given an array trust where trust[i] = [ai, bi] representing that the person labeled ai trusts the person labeled bi.

Return the label of the town judge if the town judge exists and can be identified, or return -1 otherwise.



Example 1:

Input: n = 2, trust = [[1,2]]
Output: 2

Example 2:

Input: n = 3, trust = [[1,3],[2,3]]
Output: 3

Example 3:

Input: n = 3, trust = [[1,3],[2,3],[3,1]]
Output: -1



Constraints:

1 <= n <= 1000
0 <= trust.length <= 104
trust[i].length == 2
All the pairs of trust are unique.
ai != bi
1 <= ai, bi <= n
https://leetcode.com/problems/snakes-and-ladders/
909. Snakes and Ladders
Medium
1.8K
512
Companies

You are given an n x n integer matrix board where the cells are labeled from 1 to n2 in a Boustrophedon style starting from the bottom left of the board (i.e. board[n - 1][0]) and alternating direction each row.

You start on square 1 of the board. In each move, starting from square curr, do the following:

Choose a destination square next with a label in the range [curr + 1, min(curr + 6, n2)].
This choice simulates the result of a standard 6-sided die roll: i.e., there are always at most 6 destinations, regardless of the size of the board.
If next has a snake or ladder, you must move to the destination of that snake or ladder. Otherwise, you move to next.
The game ends when you reach the square n2.

A board square on row r and column c has a snake or ladder if board[r][c] != -1. The destination of that snake or ladder is board[r][c]. Squares 1 and n2 do not have a snake or ladder.

Note that you only take a snake or ladder at most once per move. If the destination to a snake or ladder is the start of another snake or ladder, you do not follow the subsequent snake or ladder.

For example, suppose the board is [[-1,4],[-1,3]], and on the first move, your destination square is 2. You follow the ladder to square 3, but do not follow the subsequent ladder to 4.

Return the least number of moves required to reach the square n2. If it is not possible to reach the square, return -1.



Example 1:

Input: board = [[-1,-1,-1,-1,-1,-1],[-1,-1,-1,-1,-1,-1],[-1,-1,-1,-1,-1,-1],[-1,35,-1,-1,13,-1],[-1,-1,-1,-1,-1,-1],[-1,15,-1,-1,-1,-1]]
Output: 4
Explanation:
In the beginning, you start at square 1 (at row 5, column 0).
You decide to move to square 2 and must take the ladder to square 15.
You then decide to move to square 17 and must take the snake to square 13.
You then decide to move to square 14 and must take the ladder to square 35.
You then decide to move to square 36, ending the game.
This is the lowest possible number of moves to reach the last square, so return 4.

Example 2:

Input: board = [[-1,-1],[-1,3]]
Output: 1



Constraints:

n == board.length == board[i].length
2 <= n <= 20
grid[i][j] is either -1 or in the range [1, n2].
The squares labeled 1 and n2 do not have any ladders or snakes.
https://leetcode.com/problems/find-closest-node-to-given-two-nodes/
2359. Find Closest Node to Given Two Nodes
Medium
767
175
Companies

You are given a directed graph of n nodes numbered from 0 to n - 1, where each node has at most one outgoing edge.

The graph is represented with a given 0-indexed array edges of size n, indicating that there is a directed edge from node i to node edges[i]. If there is no outgoing edge from i, then edges[i] == -1.

You are also given two integers node1 and node2.

Return the index of the node that can be reached from both node1 and node2, such that the maximum between the distance from node1 to that node, and from node2 to that node is minimized. If there are multiple answers, return the node with the smallest index, and if no possible answer exists, return -1.

Note that edges may contain cycles.



Example 1:

Input: edges = [2,2,3,-1], node1 = 0, node2 = 1
Output: 2
Explanation: The distance from node 0 to node 2 is 1, and the distance from node 1 to node 2 is 1.
The maximum of those two distances is 1. It can be proven that we cannot get a node with a smaller maximum distance than 1, so we return node 2.

Example 2:

Input: edges = [1,2,-1], node1 = 0, node2 = 2
Output: 2
Explanation: The distance from node 0 to node 2 is 2, and the distance from node 2 to itself is 0.
The maximum of those two distances is 2. It can be proven that we cannot get a node with a smaller maximum distance than 2, so we return node 2.



Constraints:

n == edges.length
2 <= n <= 105
-1 <= edges[i] < n
edges[i] != i
0 <= node1, node2 < n
https://leetcode.com/problems/cheapest-flights-within-k-stops/
787. Cheapest Flights Within K Stops
Medium
6.8K
303
Companies

There are n cities connected by some number of flights. You are given an array flights where flights[i] = [fromi, toi, pricei] indicates that there is a flight from city fromi to city toi with cost pricei.

You are also given three integers src, dst, and k, return the cheapest price from src to dst with at most k stops. If there is no such route, return -1.



Example 1:

Input: n = 4, flights = [[0,1,100],[1,2,100],[2,0,100],[1,3,600],[2,3,200]], src = 0, dst = 3, k = 1
Output: 700
Explanation:
The graph is shown above.
The optimal path with at most 1 stop from city 0 to 3 is marked in red and has cost 100 + 600 = 700.
Note that the path through cities [0,1,2,3] is cheaper but is invalid because it uses 2 stops.

Example 2:

Input: n = 3, flights = [[0,1,100],[1,2,100],[0,2,500]], src = 0, dst = 2, k = 1
Output: 200
Explanation:
The graph is shown above.
The optimal path with at most 1 stop from city 0 to 2 is marked in red and has cost 100 + 100 = 200.

Example 3:

Input: n = 3, flights = [[0,1,100],[1,2,100],[0,2,500]], src = 0, dst = 2, k = 0
Output: 500
Explanation:
The graph is shown above.
The optimal path with no stops from city 0 to 2 is marked in red and has cost 500.



Constraints:

1 <= n <= 100
0 <= flights.length <= (n * (n - 1) / 2)
flights[i].length == 3
0 <= fromi, toi < n
fromi != toi
1 <= pricei <= 104
There will not be any multiple flights between two cities.
0 <= src, dst, k < n
src != dst
https://leetcode.com/problems/concatenated-words/
472. Concatenated Words
Hard
2.7K
244
Companies

Given an array of strings words (without duplicates), return all the concatenated words in the given list of words.

A concatenated word is defined as a string that is comprised entirely of at least two shorter words in the given array.



Example 1:

Input: words = ["cat","cats","catsdogcats","dog","dogcatsdog","hippopotamuses","rat","ratcatdogcat"]
Output: ["catsdogcats","dogcatsdog","ratcatdogcat"]
Explanation: "catsdogcats" can be concatenated by "cats", "dog" and "cats";
"dogcatsdog" can be concatenated by "dog", "cats" and "dog";
"ratcatdogcat" can be concatenated by "rat", "cat", "dog" and "cat".

Example 2:

Input: words = ["cat","dog","catdog"]
Output: ["catdog"]



Constraints:

1 <= words.length <= 104
1 <= words[i].length <= 30
words[i] consists of only lowercase English letters.
All the strings of words are unique.
1 <= sum(words[i].length) <= 105
https://leetcode.com/problems/data-stream-as-disjoint-intervals/
352. Data Stream as Disjoint Intervals
Hard
1.1K
249
Companies

Given a data stream input of non-negative integers a1, a2, ..., an, summarize the numbers seen so far as a list of disjoint intervals.

Implement the SummaryRanges class:

SummaryRanges() Initializes the object with an empty stream.
void addNum(int value) Adds the integer value to the stream.
int[][] getIntervals() Returns a summary of the integers in the stream currently as a list of disjoint intervals [starti, endi]. The answer should be sorted by starti.



Example 1:

Input
["SummaryRanges", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals"]
[[], [1], [], [3], [], [7], [], [2], [], [6], []]
Output
[null, null, [[1, 1]], null, [[1, 1], [3, 3]], null, [[1, 1], [3, 3], [7, 7]], null, [[1, 3], [7, 7]], null, [[1, 3], [6, 7]]]

Explanation
SummaryRanges summaryRanges = new SummaryRanges();
summaryRanges.addNum(1); // arr = [1]
summaryRanges.getIntervals(); // return [[1, 1]]
summaryRanges.addNum(3); // arr = [1, 3]
summaryRanges.getIntervals(); // return [[1, 1], [3, 3]]
summaryRanges.addNum(7); // arr = [1, 3, 7]
summaryRanges.getIntervals(); // return [[1, 1], [3, 3], [7, 7]]
summaryRanges.addNum(2); // arr = [1, 2, 3, 7]
summaryRanges.getIntervals(); // return [[1, 3], [7, 7]]
summaryRanges.addNum(6); // arr = [1, 2, 3, 6, 7]
summaryRanges.getIntervals(); // return [[1, 3], [6, 7]]



Constraints:

0 <= value <= 104
At most 3 * 104 calls will be made to addNum and getIntervals.



Follow up: What if there are lots of merges and the number of disjoint intervals is small compared to the size of the data stream?
https://leetcode.com/problems/lfu-cache/
460. LFU Cache
Hard
4.2K
252
Companies

Design and implement a data structure for a Least Frequently Used (LFU) cache.

Implement the LFUCache class:

LFUCache(int capacity) Initializes the object with the capacity of the data structure.
int get(int key) Gets the value of the key if the key exists in the cache. Otherwise, returns -1.
void put(int key, int value) Update the value of the key if present, or inserts the key if not already present. When the cache reaches its capacity, it should invalidate and remove the least frequently used key before inserting a new item. For this problem, when there is a tie (i.e., two or more keys with the same frequency), the least recently used key would be invalidated.

To determine the least frequently used key, a use counter is maintained for each key in the cache. The key with the smallest use counter is the least frequently used key.

When a key is first inserted into the cache, its use counter is set to 1 (due to the put operation). The use counter for a key in the cache is incremented either a get or put operation is called on it.

The functions get and put must each run in O(1) average time complexity.



Example 1:

Input
["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]

Explanation
// cnt(x) = the use counter for key x
// cache=[] will show the last used order for tiebreakers (leftmost element is most recent)
LFUCache lfu = new LFUCache(2);
lfu.put(1, 1); // cache=[1,_], cnt(1)=1
lfu.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1
lfu.get(1); // return 1
// cache=[1,2], cnt(2)=1, cnt(1)=2
lfu.put(3, 3); // 2 is the LFU key because cnt(2)=1 is the smallest, invalidate 2.
// cache=[3,1], cnt(3)=1, cnt(1)=2
lfu.get(2); // return -1 (not found)
lfu.get(3); // return 3
// cache=[3,1], cnt(3)=2, cnt(1)=2
lfu.put(4, 4); // Both 1 and 3 have the same cnt, but 1 is LRU, invalidate 1.
// cache=[4,3], cnt(4)=1, cnt(3)=2
lfu.get(1); // return -1 (not found)
lfu.get(3); // return 3
// cache=[3,4], cnt(4)=1, cnt(3)=3
lfu.get(4); // return 4
// cache=[4,3], cnt(4)=2, cnt(3)=3



Constraints:

0 <= capacity <= 104
0 <= key <= 105
0 <= value <= 109
At most 2 * 105 calls will be made to get and put.
https://leetcode.com/problems/n-th-tribonacci-number/
1137. N-th Tribonacci Number
Easy
2.9K
143
Companies

The Tribonacci sequence Tn is defined as follows:

T0 = 0, T1 = 1, T2 = 1, and Tn+3 = Tn + Tn+1 + Tn+2 for n >= 0.

Given n, return the value of Tn.



Example 1:

Input: n = 4
Output: 4
Explanation:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4

Example 2:

Input: n = 25
Output: 1389537



Constraints:

0 <= n <= 37
The answer is guaranteed to fit within a 32-bit integer, ie. answer <= 2^31 - 1.
https://leetcode.com/problems/best-team-with-no-conflicts/
1626. Best Team With No Conflicts
Medium
1.5K
45
Companies

You are the manager of a basketball team. For the upcoming tournament, you want to choose the team with the highest overall score. The score of the team is the sum of scores of all the players in the team.

However, the basketball team is not allowed to have conflicts. A conflict exists if a younger player has a strictly higher score than an older player. A conflict does not occur between players of the same age.

Given two lists, scores and ages, where each scores[i] and ages[i] represents the score and age of the ith player, respectively, return the highest overall score of all possible basketball teams.



Example 1:

Input: scores = [1,3,5,10,15], ages = [1,2,3,4,5]
Output: 34
Explanation: You can choose all the players.

Example 2:

Input: scores = [4,5,6,5], ages = [2,1,2,1]
Output: 16
Explanation: It is best to choose the last 3 players. Notice that you are allowed to choose multiple people of the same age.

Example 3:

Input: scores = [1,2,3,5], ages = [8,9,10,1]
Output: 6
Explanation: It is best to choose the first 3 players.



Constraints:

1 <= scores.length, ages.length <= 1000
scores.length == ages.length
1 <= scores[i] <= 106
1 <= ages[i] <= 1000