1.57K subscribers
578 photos
1 file
950 links
Don't miss a day to solve the problem
My leetcode graph - https://leetcode.com/SamoylenkoDmitry/
Download Telegram
https://leetcode.com/problems/binary-tree-maximum-path-sum/
124. Binary Tree Maximum Path Sum
Hard
12.6K
607
Companies

A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.

The path sum of a path is the sum of the node's values in the path.

Given the root of a binary tree, return the maximum path sum of any non-empty path.



Example 1:

Input: root = [1,2,3]
Output: 6
Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.

Example 2:

Input: root = [-10,9,20,null,null,15,7]
Output: 42
Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.



Constraints:

The number of nodes in the tree is in the range [1, 3 * 104].
-1000 <= Node.val <= 1000
https://leetcode.com/problems/climbing-stairs/
70. Climbing Stairs
Easy
16.1K
481
Companies

You are climbing a staircase. It takes n steps to reach the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?



Example 1:

Input: n = 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps

Example 2:

Input: n = 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step



Constraints:

1 <= n <= 45
https://leetcode.com/problems/minimum-falling-path-sum/
931. Minimum Falling Path Sum
Medium
4K
115
Companies

Given an n x n array of integers matrix, return the minimum sum of any falling path through matrix.

A falling path starts at any element in the first row and chooses the element in the next row that is either directly below or diagonally left/right. Specifically, the next element from position (row, col) will be (row + 1, col - 1), (row + 1, col), or (row + 1, col + 1).



Example 1:

Input: matrix = [[2,1,3],[6,5,4],[7,8,9]]
Output: 13
Explanation: There are two falling paths with a minimum sum as shown.

Example 2:

Input: matrix = [[-19,57],[-40,-5]]
Output: -59
Explanation: The falling path with a minimum sum is shown.



Constraints:

n == matrix.length == matrix[i].length
1 <= n <= 100
-100 <= matrix[i][j] <= 100
https://leetcode.com/problems/house-robber/
198. House Robber
Medium
16.1K
317
Companies

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security systems connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given an integer array nums representing the amount of money of each house, return the maximum amount of money you can rob tonight without alerting the police.



Example 1:

Input: nums = [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4.

Example 2:

Input: nums = [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
Total amount you can rob = 2 + 9 + 1 = 12.



Constraints:

1 <= nums.length <= 100
0 <= nums[i] <= 400
https://leetcode.com/problems/longest-common-subsequence/
1143. Longest Common Subsequence
Medium
9.6K
110
Companies

Given two strings text1 and text2, return the length of their longest common subsequence. If there is no common subsequence, return 0.

A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.

For example, "ace" is a subsequence of "abcde".

A common subsequence of two strings is a subsequence that is common to both strings.



Example 1:

Input: text1 = "abcde", text2 = "ace"
Output: 3
Explanation: The longest common subsequence is "ace" and its length is 3.

Example 2:

Input: text1 = "abc", text2 = "abc"
Output: 3
Explanation: The longest common subsequence is "abc" and its length is 3.

Example 3:

Input: text1 = "abc", text2 = "def"
Output: 0
Explanation: There is no such common subsequence, so the result is 0.



Constraints:

1 <= text1.length, text2.length <= 1000
text1 and text2 consist of only lowercase English characters.
https://leetcode.com/problems/implement-queue-using-stacks/
232. Implement Queue using Stacks
Easy
5.2K
314
Companies

Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should support all the functions of a normal queue (push, peek, pop, and empty).

Implement the MyQueue class:

void push(int x) Pushes element x to the back of the queue.
int pop() Removes the element from the front of the queue and returns it.
int peek() Returns the element at the front of the queue.
boolean empty() Returns true if the queue is empty, false otherwise.

Notes:

You must use only standard operations of a stack, which means only push to top, peek/pop from top, size, and is empty operations are valid.
Depending on your language, the stack may not be supported natively. You may simulate a stack using a list or deque (double-ended queue) as long as you use only a stack's standard operations.



Example 1:

Input
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
Output
[null, null, null, 1, 1, false]

Explanation
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false



Constraints:

1 <= x <= 9
At most 100 calls will be made to push, pop, peek, and empty.
All the calls to pop and peek are valid.
https://leetcode.com/problems/evaluate-reverse-polish-notation/
150. Evaluate Reverse Polish Notation
Medium
5K
814
Companies

Evaluate the value of an arithmetic expression in Reverse Polish Notation.

Valid operators are +, -, *, and /. Each operand may be an integer or another expression.

Note that division between two integers should truncate toward zero.

It is guaranteed that the given RPN expression is always valid. That means the expression would always evaluate to a result, and there will not be any division by zero operation.



Example 1:

Input: tokens = ["2","1","+","3","*"]
Output: 9
Explanation: ((2 + 1) * 3) = 9

Example 2:

Input: tokens = ["4","13","5","/","+"]
Output: 6
Explanation: (4 + (13 / 5)) = 6

Example 3:

Input: tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
Output: 22
Explanation: ((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22



Constraints:

1 <= tokens.length <= 104
tokens[i] is either an operator: "+", "-", "*", or "/", or an integer in the range [-200, 200].
https://leetcode.com/problems/daily-temperatures/
739. Daily Temperatures
Medium
9.1K
208
Companies

Given an array of integers temperatures represents the daily temperatures, return an array answer such that answer[i] is the number of days you have to wait after the ith day to get a warmer temperature. If there is no future day for which this is possible, keep answer[i] == 0 instead.



Example 1:

Input: temperatures = [73,74,75,71,69,72,76,73]
Output: [1,1,4,2,1,1,0,0]

Example 2:

Input: temperatures = [30,40,50,60]
Output: [1,1,1,0]

Example 3:

Input: temperatures = [30,60,90]
Output: [1,1,0]



Constraints:

1 <= temperatures.length <= 105
30 <= temperatures[i] <= 100
https://leetcode.com/problems/find-if-path-exists-in-graph/
1971. Find if Path Exists in Graph
Easy
2.3K
116
Companies

There is a bi-directional graph with n vertices, where each vertex is labeled from 0 to n - 1 (inclusive). The edges in the graph are represented as a 2D integer array edges, where each edges[i] = [ui, vi] denotes a bi-directional edge between vertex ui and vertex vi. Every vertex pair is connected by at most one edge, and no vertex has an edge to itself.

You want to determine if there is a valid path that exists from vertex source to vertex destination.

Given edges and the integers n, source, and destination, return true if there is a valid path from source to destination, or false otherwise.



Example 1:

Input: n = 3, edges = [[0,1],[1,2],[2,0]], source = 0, destination = 2
Output: true
Explanation: There are two paths from vertex 0 to vertex 2:
- 0 → 1 → 2
- 0 → 2

Example 2:

Input: n = 6, edges = [[0,1],[0,2],[3,5],[5,4],[4,3]], source = 0, destination = 5
Output: false
Explanation: There is no path from vertex 0 to vertex 5.
https://leetcode.com/problems/keys-and-rooms/
841. Keys and Rooms
Medium
4.6K
218
Companies

There are n rooms labeled from 0 to n - 1 and all the rooms are locked except for room 0. Your goal is to visit all the rooms. However, you cannot enter a locked room without having its key.

When you visit a room, you may find a set of distinct keys in it. Each key has a number on it, denoting which room it unlocks, and you can take all of them with you to unlock the other rooms.

Given an array rooms where rooms[i] is the set of keys that you can obtain if you visited room i, return true if you can visit all the rooms, or false otherwise.



Example 1:

Input: rooms = [[1],[2],[3],[]]
Output: true
Explanation:
We visit room 0 and pick up key 1.
We then visit room 1 and pick up key 2.
We then visit room 2 and pick up key 3.
We then visit room 3.
Since we were able to visit every room, we return true.

Example 2:

Input: rooms = [[1,3],[3,0,1],[2],[0]]
Output: false
Explanation: We can not enter room number 2 since the only key that unlocks it is in that room.



Constraints:

n == rooms.length
2 <= n <= 1000
0 <= rooms[i].length <= 1000
1 <= sum(rooms[i].length) <= 3000
0 <= rooms[i][j] < n
All the values of rooms[i] are unique.
https://leetcode.com/problems/possible-bipartition/
886. Possible Bipartition
Medium
3.7K
86
Companies

We want to split a group of n people (labeled from 1 to n) into two groups of any size. Each person may dislike some other people, and they should not go into the same group.

Given the integer n and the array dislikes where dislikes[i] = [ai, bi] indicates that the person labeled ai does not like the person labeled bi, return true if it is possible to split everyone into two groups in this way.



Example 1:

Input: n = 4, dislikes = [[1,2],[1,3],[2,4]]
Output: true
Explanation: group1 [1,4] and group2 [2,3].

Example 2:

Input: n = 3, dislikes = [[1,2],[1,3],[2,3]]
Output: false

Example 3:

Input: n = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]
Output: false



Constraints:

1 <= n <= 2000
0 <= dislikes.length <= 104
dislikes[i].length == 2
1 <= dislikes[i][j] <= n
ai < bi
All the pairs of dislikes are unique.
https://leetcode.com/problems/sum-of-distances-in-tree/
834. Sum of Distances in Tree
Hard
3.9K
89
Companies

There is an undirected connected tree with n nodes labeled from 0 to n - 1 and n - 1 edges.

You are given the integer n and the array edges where edges[i] = [ai, bi] indicates that there is an edge between nodes ai and bi in the tree.

Return an array answer of length n where answer[i] is the sum of the distances between the ith node in the tree and all other nodes.



Example 1:

Input: n = 6, edges = [[0,1],[0,2],[2,3],[2,4],[2,5]]
Output: [8,12,6,10,10,10]
Explanation: The tree is shown above.
We can see that dist(0,1) + dist(0,2) + dist(0,3) + dist(0,4) + dist(0,5)
equals 1 + 1 + 2 + 2 + 2 = 8.
Hence, answer[0] = 8, and so on.

Example 2:

Input: n = 1, edges = []
Output: [0]

Example 3:

Input: n = 2, edges = [[1,0]]
Output: [1,1]



Constraints:

1 <= n <= 3 * 104
edges.length == n - 1
edges[i].length == 2
0 <= ai, bi < n
ai != bi
The given input represents a valid tree.
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/
309. Best Time to Buy and Sell Stock with Cooldown
Medium
7.6K
261
Companies

You are given an array prices where prices[i] is the price of a given stock on the ith day.

Find the maximum profit you can achieve. You may complete as many transactions as you like (i.e., buy one and sell one share of the stock multiple times) with the following restrictions:

After you sell your stock, you cannot buy stock on the next day (i.e., cooldown one day).

Note: You may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).



Example 1:

Input: prices = [1,2,3,0,2]
Output: 3
Explanation: transactions = [buy, sell, cooldown, buy, sell]

Example 2:

Input: prices = [1]
Output: 0



Constraints:

1 <= prices.length <= 5000
0 <= prices[i] <= 1000
https://leetcode.com/problems/domino-and-tromino-tiling/
790. Domino and Tromino Tiling
Medium
2.5K
776
Companies

You have two types of tiles: a 2 x 1 domino shape and a tromino shape. You may rotate these shapes.

Given an integer n, return the number of ways to tile an 2 x n board. Since the answer may be very large, return it modulo 109 + 7.

In a tiling, every square must be covered by a tile. Two tilings are different if and only if there are two 4-directionally adjacent cells on the board such that exactly one of the tilings has both squares occupied by a tile.



Example 1:

Input: n = 3
Output: 5
Explanation: The five different ways are show above.

Example 2:

Input: n = 1
Output: 1



Constraints:

1 <= n <= 1000
https://leetcode.com/problems/longest-subsequence-with-limited-sum/
2389. Longest Subsequence With Limited Sum
Easy
685
72
Companies

You are given an integer array nums of length n, and an integer array queries of length m.

Return an array answer of length m where answer[i] is the maximum size of a subsequence that you can take from nums such that the sum of its elements is less than or equal to queries[i].

A subsequence is an array that can be derived from another array by deleting some or no elements without changing the order of the remaining elements.



Example 1:

Input: nums = [4,5,2,1], queries = [3,10,21]
Output: [2,3,4]
Explanation: We answer the queries as follows:
- The subsequence [2,1] has a sum less than or equal to 3. It can be proven that 2 is the maximum size of such a subsequence, so answer[0] = 2.
- The subsequence [4,5,1] has a sum less than or equal to 10. It can be proven that 3 is the maximum size of such a subsequence, so answer[1] = 3.
- The subsequence [4,5,2,1] has a sum less than or equal to 21. It can be proven that 4 is the maximum size of such a subsequence, so answer[2] = 4.

Example 2:

Input: nums = [2,3,4,5], queries = [1]
Output: [0]
Explanation: The empty subsequence is the only subsequence that has a sum less than or equal to 1, so answer[0] = 0.



Constraints:

n == nums.length
m == queries.length
1 <= n, m <= 1000
1 <= nums[i], queries[i] <= 106
https://leetcode.com/problems/jump-game/
55. Jump Game
Medium
14.3K
748
Companies

You are given an integer array nums. You are initially positioned at the array's first index, and each element in the array represents your maximum jump length at that position.

Return true if you can reach the last index, or false otherwise.



Example 1:

Input: nums = [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.

Example 2:

Input: nums = [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum jump length is 0, which makes it impossible to reach the last index.



Constraints:

1 <= nums.length <= 104
0 <= nums[i] <= 105
https://leetcode.com/problems/maximum-bags-with-full-capacity-of-rocks/
2279. Maximum Bags With Full Capacity of Rocks
Medium
884
40
Companies

You have n bags numbered from 0 to n - 1. You are given two 0-indexed integer arrays capacity and rocks. The ith bag can hold a maximum of capacity[i] rocks and currently contains rocks[i] rocks. You are also given an integer additionalRocks, the number of additional rocks you can place in any of the bags.

Return the maximum number of bags that could have full capacity after placing the additional rocks in some bags.



Example 1:

Input: capacity = [2,3,4,5], rocks = [1,2,4,4], additionalRocks = 2
Output: 3
Explanation:
Place 1 rock in bag 0 and 1 rock in bag 1.
The number of rocks in each bag are now [2,3,4,4].
Bags 0, 1, and 2 have full capacity.
There are 3 bags at full capacity, so we return 3.
It can be shown that it is not possible to have more than 3 bags at full capacity.
Note that there may be other ways of placing the rocks that result in an answer of 3.

Example 2:

Input: capacity = [10,2,2], rocks = [2,2,0], additionalRocks = 100
Output: 3
Explanation:
Place 8 rocks in bag 0 and 2 rocks in bag 2.
The number of rocks in each bag are now [10,2,2].
Bags 0, 1, and 2 have full capacity.
There are 3 bags at full capacity, so we return 3.
It can be shown that it is not possible to have more than 3 bags at full capacity.
Note that we did not use all of the additional rocks.



Constraints:

n == capacity.length == rocks.length
1 <= n <= 5 * 104
1 <= capacity[i] <= 109
0 <= rocks[i] <= capacity[i]
1 <= additionalRocks <= 109
https://leetcode.com/problems/remove-stones-to-minimize-the-total/
1962. Remove Stones to Minimize the Total
Medium
818
77
Companies

You are given a 0-indexed integer array piles, where piles[i] represents the number of stones in the ith pile, and an integer k. You should apply the following operation exactly k times:

Choose any piles[i] and remove floor(piles[i] / 2) stones from it.

Notice that you can apply the operation on the same pile more than once.

Return the minimum possible total number of stones remaining after applying the k operations.

floor(x) is the greatest integer that is smaller than or equal to x (i.e., rounds x down).



Example 1:

Input: piles = [5,4,9], k = 2
Output: 12
Explanation: Steps of a possible scenario are:
- Apply the operation on pile 2. The resulting piles are [5,4,5].
- Apply the operation on pile 0. The resulting piles are [3,4,5].
The total number of stones in [3,4,5] is 12.

Example 2:

Input: piles = [4,3,6,7], k = 3
Output: 12
Explanation: Steps of a possible scenario are:
- Apply the operation on pile 2. The resulting piles are [4,3,3,7].
- Apply the operation on pile 3. The resulting piles are [4,3,3,4].
- Apply the operation on pile 0. The resulting piles are [2,3,3,4].
The total number of stones in [2,3,3,4] is 12.



Constraints:

1 <= piles.length <= 105
1 <= piles[i] <= 104
1 <= k <= 105
https://leetcode.com/problems/single-threaded-cpu/
1834. Single-Threaded CPU
Medium
1.8K
172
Companies

You are given n​​​​​​ tasks labeled from 0 to n - 1 represented by a 2D integer array tasks, where tasks[i] = [enqueueTimei, processingTimei] means that the i​​​​​​th​​​​ task will be available to process at enqueueTimei and will take processingTimei to finish processing.

You have a single-threaded CPU that can process at most one task at a time and will act in the following way:

If the CPU is idle and there are no available tasks to process, the CPU remains idle.
If the CPU is idle and there are available tasks, the CPU will choose the one with the shortest processing time. If multiple tasks have the same shortest processing time, it will choose the task with the smallest index.
Once a task is started, the CPU will process the entire task without stopping.
The CPU can finish a task then start a new one instantly.

Return the order in which the CPU will process the tasks.



Example 1:

Input: tasks = [[1,2],[2,4],[3,2],[4,1]]
Output: [0,2,3,1]
Explanation: The events go as follows:
- At time = 1, task 0 is available to process. Available tasks = {0}.
- Also at time = 1, the idle CPU starts processing task 0. Available tasks = {}.
- At time = 2, task 1 is available to process. Available tasks = {1}.
- At time = 3, task 2 is available to process. Available tasks = {1, 2}.
- Also at time = 3, the CPU finishes task 0 and starts processing task 2 as it is the shortest. Available tasks = {1}.
- At time = 4, task 3 is available to process. Available tasks = {1, 3}.
- At time = 5, the CPU finishes task 2 and starts processing task 3 as it is the shortest. Available tasks = {1}.
- At time = 6, the CPU finishes task 3 and starts processing task 1. Available tasks = {}.
- At time = 10, the CPU finishes task 1 and becomes idle.

Example 2:

Input: tasks = [[7,10],[7,12],[7,5],[7,4],[7,2]]
Output: [4,3,2,0,1]
Explanation: The events go as follows:
- At time = 7, all the tasks become available. Available tasks = {0,1,2,3,4}.
- Also at time = 7, the idle CPU starts processing task 4. Available tasks = {0,1,2,3}.
- At time = 9, the CPU finishes task 4 and starts processing task 3. Available tasks = {0,1,2}.
- At time = 13, the CPU finishes task 3 and starts processing task 2. Available tasks = {0,1}.
- At time = 18, the CPU finishes task 2 and starts processing task 0. Available tasks = {1}.
- At time = 28, the CPU finishes task 0 and starts processing task 1. Available tasks = {}.
- At time = 40, the CPU finishes task 1 and becomes idle.



Constraints:

tasks.length == n
1 <= n <= 105
1 <= enqueueTimei, processingTimei <= 109
https://leetcode.com/problems/all-paths-from-source-to-target/
797. All Paths From Source to Target
Medium
5.8K
128
Companies

Given a directed acyclic graph (DAG) of n nodes labeled from 0 to n - 1, find all possible paths from node 0 to node n - 1 and return them in any order.

The graph is given as follows: graph[i] is a list of all nodes you can visit from node i (i.e., there is a directed edge from node i to node graph[i][j]).



Example 1:

Input: graph = [[1,2],[3],[3],[]]
Output: [[0,1,3],[0,2,3]]
Explanation: There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.

Example 2:

Input: graph = [[4,3,1],[3,2,4],[3],[4],[]]
Output: [[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]



Constraints:

n == graph.length
2 <= n <= 15
0 <= graph[i][j] < n
graph[i][j] != i (i.e., there will be no self-loops).
All the elements of graph[i] are unique.
The input graph is guaranteed to be a DAG.
https://leetcode.com/problems/unique-paths-iii/
980. Unique Paths III
Hard
3.9K
156
Companies

You are given an m x n integer array grid where grid[i][j] could be:

1 representing the starting square. There is exactly one starting square.
2 representing the ending square. There is exactly one ending square.
0 representing empty squares we can walk over.
-1 representing obstacles that we cannot walk over.

Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.



Example 1:

Input: grid = [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
Output: 2
Explanation: We have the following two paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)

Example 2:

Input: grid = [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
Output: 4
Explanation: We have the following four paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)

Example 3:

Input: grid = [[0,1],[2,0]]
Output: 0
Explanation: There is no path that walks over every empty square exactly once.
Note that the starting and ending square can be anywhere in the grid.



Constraints:

m == grid.length
n == grid[i].length
1 <= m, n <= 20
1 <= m * n <= 20
-1 <= grid[i][j] <= 2
There is exactly one starting cell and one ending cell.