https://leetcode.com/problems/unique-number-of-occurrences/
1207. Unique Number of Occurrences
Easy
Given an array of integers arr, return true if the number of occurrences of each value in the array is unique, or false otherwise.
Example 1:
Input: arr = [1,2,2,1,1,3]
Output: true
Explanation: The value 1 has 3 occurrences, 2 has 2 and 3 has 1. No two values have the same number of occurrences.
Example 2:
Input: arr = [1,2]
Output: false
Example 3:
Input: arr = [-3,0,1,-3,1,1,1,-3,10,0]
Output: true
Constraints:
1 <= arr.length <= 1000
-1000 <= arr[i] <= 1000
1207. Unique Number of Occurrences
Easy
Given an array of integers arr, return true if the number of occurrences of each value in the array is unique, or false otherwise.
Example 1:
Input: arr = [1,2,2,1,1,3]
Output: true
Explanation: The value 1 has 3 occurrences, 2 has 2 and 3 has 1. No two values have the same number of occurrences.
Example 2:
Input: arr = [1,2]
Output: false
Example 3:
Input: arr = [-3,0,1,-3,1,1,1,-3,10,0]
Output: true
Constraints:
1 <= arr.length <= 1000
-1000 <= arr[i] <= 1000
LeetCode
Unique Number of Occurrences - LeetCode
Can you solve this real interview question? Unique Number of Occurrences - Given an array of integers arr, return true if the number of occurrences of each value in the array is unique or false otherwise.
Example 1:
Input: arr = [1,2,2,1,1,3]
Output:…
Example 1:
Input: arr = [1,2,2,1,1,3]
Output:…
https://leetcode.com/problems/determine-if-string-halves-are-alike/
1704. Determine if String Halves Are Alike
Easy
You are given a string s of even length. Split this string into two halves of equal lengths, and let a be the first half and b be the second half.
Two strings are alike if they have the same number of vowels ('a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U'). Notice that s contains uppercase and lowercase letters.
Return true if a and b are alike. Otherwise, return false.
Example 1:
Input: s = "book"
Output: true
Explanation: a = "bo" and b = "ok". a has 1 vowel and b has 1 vowel. Therefore, they are alike.
Example 2:
Input: s = "textbook"
Output: false
Explanation: a = "text" and b = "book". a has 1 vowel whereas b has 2. Therefore, they are not alike.
Notice that the vowel o is counted twice.
Constraints:
2 <= s.length <= 1000
s.length is even.
s consists of uppercase and lowercase letters.
1704. Determine if String Halves Are Alike
Easy
You are given a string s of even length. Split this string into two halves of equal lengths, and let a be the first half and b be the second half.
Two strings are alike if they have the same number of vowels ('a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U'). Notice that s contains uppercase and lowercase letters.
Return true if a and b are alike. Otherwise, return false.
Example 1:
Input: s = "book"
Output: true
Explanation: a = "bo" and b = "ok". a has 1 vowel and b has 1 vowel. Therefore, they are alike.
Example 2:
Input: s = "textbook"
Output: false
Explanation: a = "text" and b = "book". a has 1 vowel whereas b has 2. Therefore, they are not alike.
Notice that the vowel o is counted twice.
Constraints:
2 <= s.length <= 1000
s.length is even.
s consists of uppercase and lowercase letters.
LeetCode
Determine if String Halves Are Alike - LeetCode
Can you solve this real interview question? Determine if String Halves Are Alike - You are given a string s of even length. Split this string into two halves of equal lengths, and let a be the first half and b be the second half.
Two strings are alike if…
Two strings are alike if…
https://leetcode.com/problems/determine-if-two-strings-are-close/
1657. Determine if Two Strings Are Close
Medium
Two strings are considered close if you can attain one from the other using the following operations:
Operation 1: Swap any two existing characters.
For example, abcde -> aecdb
Operation 2: Transform every occurrence of one existing character into another existing character, and do the same with the other character.
For example, aacabb -> bbcbaa (all a's turn into b's, and all b's turn into a's)
You can use the operations on either string as many times as necessary.
Given two strings, word1 and word2, return true if word1 and word2 are close, and false otherwise.
Example 1:
Input: word1 = "abc", word2 = "bca"
Output: true
Explanation: You can attain word2 from word1 in 2 operations.
Apply Operation 1: "abc" -> "acb"
Apply Operation 1: "acb" -> "bca"
Example 2:
Input: word1 = "a", word2 = "aa"
Output: false
Explanation: It is impossible to attain word2 from word1, or vice versa, in any number of operations.
Example 3:
Input: word1 = "cabbba", word2 = "abbccc"
Output: true
Explanation: You can attain word2 from word1 in 3 operations.
Apply Operation 1: "cabbba" -> "caabbb"
Apply Operation 2: "caabbb" -> "baaccc"
Apply Operation 2: "baaccc" -> "abbccc"
Constraints:
1 <= word1.length, word2.length <= 105
word1 and word2 contain only lowercase English letters.
1657. Determine if Two Strings Are Close
Medium
Two strings are considered close if you can attain one from the other using the following operations:
Operation 1: Swap any two existing characters.
For example, abcde -> aecdb
Operation 2: Transform every occurrence of one existing character into another existing character, and do the same with the other character.
For example, aacabb -> bbcbaa (all a's turn into b's, and all b's turn into a's)
You can use the operations on either string as many times as necessary.
Given two strings, word1 and word2, return true if word1 and word2 are close, and false otherwise.
Example 1:
Input: word1 = "abc", word2 = "bca"
Output: true
Explanation: You can attain word2 from word1 in 2 operations.
Apply Operation 1: "abc" -> "acb"
Apply Operation 1: "acb" -> "bca"
Example 2:
Input: word1 = "a", word2 = "aa"
Output: false
Explanation: It is impossible to attain word2 from word1, or vice versa, in any number of operations.
Example 3:
Input: word1 = "cabbba", word2 = "abbccc"
Output: true
Explanation: You can attain word2 from word1 in 3 operations.
Apply Operation 1: "cabbba" -> "caabbb"
Apply Operation 2: "caabbb" -> "baaccc"
Apply Operation 2: "baaccc" -> "abbccc"
Constraints:
1 <= word1.length, word2.length <= 105
word1 and word2 contain only lowercase English letters.
LeetCode
Determine if Two Strings Are Close - LeetCode
Can you solve this real interview question? Determine if Two Strings Are Close - Two strings are considered close if you can attain one from the other using the following operations:
* Operation 1: Swap any two existing characters.
* For example, abcde…
* Operation 1: Swap any two existing characters.
* For example, abcde…
https://leetcode.com/problems/sort-characters-by-frequency/
451. Sort Characters By Frequency
Medium
Given a string s, sort it in decreasing order based on the frequency of the characters. The frequency of a character is the number of times it appears in the string.
Return the sorted string. If there are multiple answers, return any of them.
Example 1:
Input: s = "tree"
Output: "eert"
Explanation: 'e' appears twice while 'r' and 't' both appear once.
So 'e' must appear before both 'r' and 't'. Therefore "eetr" is also a valid answer.
Example 2:
Input: s = "cccaaa"
Output: "aaaccc"
Explanation: Both 'c' and 'a' appear three times, so both "cccaaa" and "aaaccc" are valid answers.
Note that "cacaca" is incorrect, as the same characters must be together.
Example 3:
Input: s = "Aabb"
Output: "bbAa"
Explanation: "bbaA" is also a valid answer, but "Aabb" is incorrect.
Note that 'A' and 'a' are treated as two different characters.
Constraints:
1 <= s.length <= 5 * 105
s consists of uppercase and lowercase English letters and digits.
451. Sort Characters By Frequency
Medium
Given a string s, sort it in decreasing order based on the frequency of the characters. The frequency of a character is the number of times it appears in the string.
Return the sorted string. If there are multiple answers, return any of them.
Example 1:
Input: s = "tree"
Output: "eert"
Explanation: 'e' appears twice while 'r' and 't' both appear once.
So 'e' must appear before both 'r' and 't'. Therefore "eetr" is also a valid answer.
Example 2:
Input: s = "cccaaa"
Output: "aaaccc"
Explanation: Both 'c' and 'a' appear three times, so both "cccaaa" and "aaaccc" are valid answers.
Note that "cacaca" is incorrect, as the same characters must be together.
Example 3:
Input: s = "Aabb"
Output: "bbAa"
Explanation: "bbaA" is also a valid answer, but "Aabb" is incorrect.
Note that 'A' and 'a' are treated as two different characters.
Constraints:
1 <= s.length <= 5 * 105
s consists of uppercase and lowercase English letters and digits.
LeetCode
Sort Characters By Frequency - LeetCode
Can you solve this real interview question? Sort Characters By Frequency - Given a string s, sort it in decreasing order based on the frequency of the characters. The frequency of a character is the number of times it appears in the string.
Return the sorted…
Return the sorted…
https://leetcode.com/problems/minimum-average-difference/
2256. Minimum Average Difference
Medium
You are given a 0-indexed integer array nums of length n.
The average difference of the index i is the absolute difference between the average of the first i + 1 elements of nums and the average of the last n - i - 1 elements. Both averages should be rounded down to the nearest integer.
Return the index with the minimum average difference. If there are multiple such indices, return the smallest one.
Note:
The absolute difference of two numbers is the absolute value of their difference.
The average of n elements is the sum of the n elements divided (integer division) by n.
The average of 0 elements is considered to be 0.
Example 1:
Input: nums = [2,5,3,9,5,3]
Output: 3
Explanation:
- The average difference of index 0 is: |2 / 1 - (5 + 3 + 9 + 5 + 3) / 5| = |2 / 1 - 25 / 5| = |2 - 5| = 3.
- The average difference of index 1 is: |(2 + 5) / 2 - (3 + 9 + 5 + 3) / 4| = |7 / 2 - 20 / 4| = |3 - 5| = 2.
- The average difference of index 2 is: |(2 + 5 + 3) / 3 - (9 + 5 + 3) / 3| = |10 / 3 - 17 / 3| = |3 - 5| = 2.
- The average difference of index 3 is: |(2 + 5 + 3 + 9) / 4 - (5 + 3) / 2| = |19 / 4 - 8 / 2| = |4 - 4| = 0.
- The average difference of index 4 is: |(2 + 5 + 3 + 9 + 5) / 5 - 3 / 1| = |24 / 5 - 3 / 1| = |4 - 3| = 1.
- The average difference of index 5 is: |(2 + 5 + 3 + 9 + 5 + 3) / 6 - 0| = |27 / 6 - 0| = |4 - 0| = 4.
The average difference of index 3 is the minimum average difference so return 3.
Example 2:
Input: nums = [0]
Output: 0
Explanation:
The only index is 0 so return 0.
The average difference of index 0 is: |0 / 1 - 0| = |0 - 0| = 0.
Constraints:
1 <= nums.length <= 105
0 <= nums[i] <= 105
2256. Minimum Average Difference
Medium
You are given a 0-indexed integer array nums of length n.
The average difference of the index i is the absolute difference between the average of the first i + 1 elements of nums and the average of the last n - i - 1 elements. Both averages should be rounded down to the nearest integer.
Return the index with the minimum average difference. If there are multiple such indices, return the smallest one.
Note:
The absolute difference of two numbers is the absolute value of their difference.
The average of n elements is the sum of the n elements divided (integer division) by n.
The average of 0 elements is considered to be 0.
Example 1:
Input: nums = [2,5,3,9,5,3]
Output: 3
Explanation:
- The average difference of index 0 is: |2 / 1 - (5 + 3 + 9 + 5 + 3) / 5| = |2 / 1 - 25 / 5| = |2 - 5| = 3.
- The average difference of index 1 is: |(2 + 5) / 2 - (3 + 9 + 5 + 3) / 4| = |7 / 2 - 20 / 4| = |3 - 5| = 2.
- The average difference of index 2 is: |(2 + 5 + 3) / 3 - (9 + 5 + 3) / 3| = |10 / 3 - 17 / 3| = |3 - 5| = 2.
- The average difference of index 3 is: |(2 + 5 + 3 + 9) / 4 - (5 + 3) / 2| = |19 / 4 - 8 / 2| = |4 - 4| = 0.
- The average difference of index 4 is: |(2 + 5 + 3 + 9 + 5) / 5 - 3 / 1| = |24 / 5 - 3 / 1| = |4 - 3| = 1.
- The average difference of index 5 is: |(2 + 5 + 3 + 9 + 5 + 3) / 6 - 0| = |27 / 6 - 0| = |4 - 0| = 4.
The average difference of index 3 is the minimum average difference so return 3.
Example 2:
Input: nums = [0]
Output: 0
Explanation:
The only index is 0 so return 0.
The average difference of index 0 is: |0 / 1 - 0| = |0 - 0| = 0.
Constraints:
1 <= nums.length <= 105
0 <= nums[i] <= 105
LeetCode
Minimum Average Difference - LeetCode
Can you solve this real interview question? Minimum Average Difference - You are given a 0-indexed integer array nums of length n.
The average difference of the index i is the absolute difference between the average of the first i + 1 elements of nums and…
The average difference of the index i is the absolute difference between the average of the first i + 1 elements of nums and…
https://leetcode.com/problems/middle-of-the-linked-list/
876. Middle of the Linked List
Easy
Given the head of a singly linked list, return the middle node of the linked list.
If there are two middle nodes, return the second middle node.
Example 1:
Input: head = [1,2,3,4,5]
Output: [3,4,5]
Explanation: The middle node of the list is node 3.
Example 2:
Input: head = [1,2,3,4,5,6]
Output: [4,5,6]
Explanation: Since the list has two middle nodes with values 3 and 4, we return the second one.
Constraints:
The number of nodes in the list is in the range [1, 100].
1 <= Node.val <= 100
876. Middle of the Linked List
Easy
Given the head of a singly linked list, return the middle node of the linked list.
If there are two middle nodes, return the second middle node.
Example 1:
Input: head = [1,2,3,4,5]
Output: [3,4,5]
Explanation: The middle node of the list is node 3.
Example 2:
Input: head = [1,2,3,4,5,6]
Output: [4,5,6]
Explanation: Since the list has two middle nodes with values 3 and 4, we return the second one.
Constraints:
The number of nodes in the list is in the range [1, 100].
1 <= Node.val <= 100
LeetCode
Middle of the Linked List - LeetCode
Can you solve this real interview question? Middle of the Linked List - Given the head of a singly linked list, return the middle node of the linked list.
If there are two middle nodes, return the second middle node.
Example 1:
[https://assets.leet…
If there are two middle nodes, return the second middle node.
Example 1:
[https://assets.leet…
https://leetcode.com/problems/odd-even-linked-list/
328. Odd Even Linked List
Medium
7.3K
422
Companies
Given the head of a singly linked list, group all the nodes with odd indices together followed by the nodes with even indices, and return the reordered list.
The first node is considered odd, and the second node is even, and so on.
Note that the relative order inside both the even and odd groups should remain as it was in the input.
You must solve the problem in O(1) extra space complexity and O(n) time complexity.
Example 1:
Input: head = [1,2,3,4,5]
Output: [1,3,5,2,4]
Example 2:
Input: head = [2,1,3,5,6,4,7]
Output: [2,3,6,7,1,5,4]
Constraints:
The number of nodes in the linked list is in the range [0, 104].
-106 <= Node.val <= 106
328. Odd Even Linked List
Medium
7.3K
422
Companies
Given the head of a singly linked list, group all the nodes with odd indices together followed by the nodes with even indices, and return the reordered list.
The first node is considered odd, and the second node is even, and so on.
Note that the relative order inside both the even and odd groups should remain as it was in the input.
You must solve the problem in O(1) extra space complexity and O(n) time complexity.
Example 1:
Input: head = [1,2,3,4,5]
Output: [1,3,5,2,4]
Example 2:
Input: head = [2,1,3,5,6,4,7]
Output: [2,3,6,7,1,5,4]
Constraints:
The number of nodes in the linked list is in the range [0, 104].
-106 <= Node.val <= 106
LeetCode
Odd Even Linked List - LeetCode
Can you solve this real interview question? Odd Even Linked List - Given the head of a singly linked list, group all the nodes with odd indices together followed by the nodes with even indices, and return the reordered list.
The first node is considered…
The first node is considered…
https://leetcode.com/problems/range-sum-of-bst/
938. Range Sum of BST
Easy
5.3K
345
Companies
Given the root node of a binary search tree and two integers low and high, return the sum of values of all nodes with a value in the inclusive range [low, high].
Example 1:
Input: root = [10,5,15,3,7,null,18], low = 7, high = 15
Output: 32
Explanation: Nodes 7, 10, and 15 are in the range [7, 15]. 7 + 10 + 15 = 32.
Example 2:
Input: root = [10,5,15,3,7,13,18,1,null,6], low = 6, high = 10
Output: 23
Explanation: Nodes 6, 7, and 10 are in the range [6, 10]. 6 + 7 + 10 = 23.
Constraints:
The number of nodes in the tree is in the range [1, 2 * 104].
1 <= Node.val <= 105
1 <= low <= high <= 105
All Node.val are unique.
938. Range Sum of BST
Easy
5.3K
345
Companies
Given the root node of a binary search tree and two integers low and high, return the sum of values of all nodes with a value in the inclusive range [low, high].
Example 1:
Input: root = [10,5,15,3,7,null,18], low = 7, high = 15
Output: 32
Explanation: Nodes 7, 10, and 15 are in the range [7, 15]. 7 + 10 + 15 = 32.
Example 2:
Input: root = [10,5,15,3,7,13,18,1,null,6], low = 6, high = 10
Output: 23
Explanation: Nodes 6, 7, and 10 are in the range [6, 10]. 6 + 7 + 10 = 23.
Constraints:
The number of nodes in the tree is in the range [1, 2 * 104].
1 <= Node.val <= 105
1 <= low <= high <= 105
All Node.val are unique.
LeetCode
Range Sum of BST - LeetCode
Can you solve this real interview question? Range Sum of BST - Given the root node of a binary search tree and two integers low and high, return the sum of values of all nodes with a value in the inclusive range [low, high].
Example 1:
[https://asse…
Example 1:
[https://asse…
https://leetcode.com/problems/leaf-similar-trees/
872. Leaf-Similar Trees
Easy
2.6K
62
Companies
Consider all the leaves of a binary tree, from left to right order, the values of those leaves form a leaf value sequence.
For example, in the given tree above, the leaf value sequence is (6, 7, 4, 9, 8).
Two binary trees are considered leaf-similar if their leaf value sequence is the same.
Return true if and only if the two given trees with head nodes root1 and root2 are leaf-similar.
Example 1:
Input: root1 = [3,5,1,6,2,9,8,null,null,7,4], root2 = [3,5,1,6,7,4,2,null,null,null,null,null,null,9,8]
Output: true
Example 2:
Input: root1 = [1,2,3], root2 = [1,3,2]
Output: false
Constraints:
The number of nodes in each tree will be in the range [1, 200].
Both of the given trees will have values in the range [0, 200].
872. Leaf-Similar Trees
Easy
2.6K
62
Companies
Consider all the leaves of a binary tree, from left to right order, the values of those leaves form a leaf value sequence.
For example, in the given tree above, the leaf value sequence is (6, 7, 4, 9, 8).
Two binary trees are considered leaf-similar if their leaf value sequence is the same.
Return true if and only if the two given trees with head nodes root1 and root2 are leaf-similar.
Example 1:
Input: root1 = [3,5,1,6,2,9,8,null,null,7,4], root2 = [3,5,1,6,7,4,2,null,null,null,null,null,null,9,8]
Output: true
Example 2:
Input: root1 = [1,2,3], root2 = [1,3,2]
Output: false
Constraints:
The number of nodes in each tree will be in the range [1, 200].
Both of the given trees will have values in the range [0, 200].
LeetCode
Leaf-Similar Trees - LeetCode
Can you solve this real interview question? Leaf-Similar Trees - Consider all the leaves of a binary tree, from left to right order, the values of those leaves form a leaf value sequence.
[https://s3-lc-upload.s3.amazonaws.com/uploads/2018/07/16/tree.png]…
[https://s3-lc-upload.s3.amazonaws.com/uploads/2018/07/16/tree.png]…
https://leetcode.com/problems/maximum-difference-between-node-and-ancestor/
1026. Maximum Difference Between Node and Ancestor
Medium
3.5K
83
Companies
Given the root of a binary tree, find the maximum value v for which there exist different nodes a and b where v = |a.val - b.val| and a is an ancestor of b.
A node a is an ancestor of b if either: any child of a is equal to b or any child of a is an ancestor of b.
Example 1:
Input: root = [8,3,10,1,6,null,14,null,null,4,7,13]
Output: 7
Explanation: We have various ancestor-node differences, some of which are given below :
|8 - 3| = 5
|3 - 7| = 4
|8 - 1| = 7
|10 - 13| = 3
Among all possible differences, the maximum value of 7 is obtained by |8 - 1| = 7.
Example 2:
Input: root = [1,null,2,null,0,3]
Output: 3
Constraints:
The number of nodes in the tree is in the range [2, 5000].
0 <= Node.val <= 105
1026. Maximum Difference Between Node and Ancestor
Medium
3.5K
83
Companies
Given the root of a binary tree, find the maximum value v for which there exist different nodes a and b where v = |a.val - b.val| and a is an ancestor of b.
A node a is an ancestor of b if either: any child of a is equal to b or any child of a is an ancestor of b.
Example 1:
Input: root = [8,3,10,1,6,null,14,null,null,4,7,13]
Output: 7
Explanation: We have various ancestor-node differences, some of which are given below :
|8 - 3| = 5
|3 - 7| = 4
|8 - 1| = 7
|10 - 13| = 3
Among all possible differences, the maximum value of 7 is obtained by |8 - 1| = 7.
Example 2:
Input: root = [1,null,2,null,0,3]
Output: 3
Constraints:
The number of nodes in the tree is in the range [2, 5000].
0 <= Node.val <= 105
LeetCode
Maximum Difference Between Node and Ancestor - LeetCode
Can you solve this real interview question? Maximum Difference Between Node and Ancestor - Given the root of a binary tree, find the maximum value v for which there exist different nodes a and b where v = |a.val - b.val| and a is an ancestor of b.
A node…
A node…
https://leetcode.com/problems/maximum-product-of-splitted-binary-tree/
1339. Maximum Product of Splitted Binary Tree
Medium
1.9K
77
Companies
Given the root of a binary tree, split the binary tree into two subtrees by removing one edge such that the product of the sums of the subtrees is maximized.
Return the maximum product of the sums of the two subtrees. Since the answer may be too large, return it modulo 109 + 7.
Note that you need to maximize the answer before taking the mod and not after taking it.
Example 1:
Input: root = [1,2,3,4,5,6]
Output: 110
Explanation: Remove the red edge and get 2 binary trees with sum 11 and 10. Their product is 110 (11*10)
Example 2:
Input: root = [1,null,2,3,4,null,null,5,6]
Output: 90
Explanation: Remove the red edge and get 2 binary trees with sum 15 and 6.Their product is 90 (15*6)
Constraints:
The number of nodes in the tree is in the range [2, 5 * 104].
1 <= Node.val <= 104
1339. Maximum Product of Splitted Binary Tree
Medium
1.9K
77
Companies
Given the root of a binary tree, split the binary tree into two subtrees by removing one edge such that the product of the sums of the subtrees is maximized.
Return the maximum product of the sums of the two subtrees. Since the answer may be too large, return it modulo 109 + 7.
Note that you need to maximize the answer before taking the mod and not after taking it.
Example 1:
Input: root = [1,2,3,4,5,6]
Output: 110
Explanation: Remove the red edge and get 2 binary trees with sum 11 and 10. Their product is 110 (11*10)
Example 2:
Input: root = [1,null,2,3,4,null,null,5,6]
Output: 90
Explanation: Remove the red edge and get 2 binary trees with sum 15 and 6.Their product is 90 (15*6)
Constraints:
The number of nodes in the tree is in the range [2, 5 * 104].
1 <= Node.val <= 104
LeetCode
Maximum Product of Splitted Binary Tree - LeetCode
Can you solve this real interview question? Maximum Product of Splitted Binary Tree - Given the root of a binary tree, split the binary tree into two subtrees by removing one edge such that the product of the sums of the subtrees is maximized.
Return the…
Return the…
https://leetcode.com/problems/binary-tree-maximum-path-sum/
124. Binary Tree Maximum Path Sum
Hard
12.6K
607
Companies
A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.
The path sum of a path is the sum of the node's values in the path.
Given the root of a binary tree, return the maximum path sum of any non-empty path.
Example 1:
Input: root = [1,2,3]
Output: 6
Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.
Example 2:
Input: root = [-10,9,20,null,null,15,7]
Output: 42
Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.
Constraints:
The number of nodes in the tree is in the range [1, 3 * 104].
-1000 <= Node.val <= 1000
124. Binary Tree Maximum Path Sum
Hard
12.6K
607
Companies
A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.
The path sum of a path is the sum of the node's values in the path.
Given the root of a binary tree, return the maximum path sum of any non-empty path.
Example 1:
Input: root = [1,2,3]
Output: 6
Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.
Example 2:
Input: root = [-10,9,20,null,null,15,7]
Output: 42
Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.
Constraints:
The number of nodes in the tree is in the range [1, 3 * 104].
-1000 <= Node.val <= 1000
LeetCode
Binary Tree Maximum Path Sum - LeetCode
Can you solve this real interview question? Binary Tree Maximum Path Sum - A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note…
https://leetcode.com/problems/climbing-stairs/
70. Climbing Stairs
Easy
16.1K
481
Companies
You are climbing a staircase. It takes n steps to reach the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Example 1:
Input: n = 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps
Example 2:
Input: n = 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step
Constraints:
1 <= n <= 45
70. Climbing Stairs
Easy
16.1K
481
Companies
You are climbing a staircase. It takes n steps to reach the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Example 1:
Input: n = 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps
Example 2:
Input: n = 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step
Constraints:
1 <= n <= 45
LeetCode
Climbing Stairs - LeetCode
Can you solve this real interview question? Climbing Stairs - You are climbing a staircase. It takes n steps to reach the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Example 1:
Input: n = 2…
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Example 1:
Input: n = 2…
https://leetcode.com/problems/minimum-falling-path-sum/
931. Minimum Falling Path Sum
Medium
4K
115
Companies
Given an n x n array of integers matrix, return the minimum sum of any falling path through matrix.
A falling path starts at any element in the first row and chooses the element in the next row that is either directly below or diagonally left/right. Specifically, the next element from position (row, col) will be (row + 1, col - 1), (row + 1, col), or (row + 1, col + 1).
Example 1:
Input: matrix = [[2,1,3],[6,5,4],[7,8,9]]
Output: 13
Explanation: There are two falling paths with a minimum sum as shown.
Example 2:
Input: matrix = [[-19,57],[-40,-5]]
Output: -59
Explanation: The falling path with a minimum sum is shown.
Constraints:
n == matrix.length == matrix[i].length
1 <= n <= 100
-100 <= matrix[i][j] <= 100
931. Minimum Falling Path Sum
Medium
4K
115
Companies
Given an n x n array of integers matrix, return the minimum sum of any falling path through matrix.
A falling path starts at any element in the first row and chooses the element in the next row that is either directly below or diagonally left/right. Specifically, the next element from position (row, col) will be (row + 1, col - 1), (row + 1, col), or (row + 1, col + 1).
Example 1:
Input: matrix = [[2,1,3],[6,5,4],[7,8,9]]
Output: 13
Explanation: There are two falling paths with a minimum sum as shown.
Example 2:
Input: matrix = [[-19,57],[-40,-5]]
Output: -59
Explanation: The falling path with a minimum sum is shown.
Constraints:
n == matrix.length == matrix[i].length
1 <= n <= 100
-100 <= matrix[i][j] <= 100
LeetCode
Minimum Falling Path Sum - LeetCode
Can you solve this real interview question? Minimum Falling Path Sum - Given an n x n array of integers matrix, return the minimum sum of any falling path through matrix.
A falling path starts at any element in the first row and chooses the element in the…
A falling path starts at any element in the first row and chooses the element in the…
https://leetcode.com/problems/house-robber/
198. House Robber
Medium
16.1K
317
Companies
You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security systems connected and it will automatically contact the police if two adjacent houses were broken into on the same night.
Given an integer array nums representing the amount of money of each house, return the maximum amount of money you can rob tonight without alerting the police.
Example 1:
Input: nums = [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4.
Example 2:
Input: nums = [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
Total amount you can rob = 2 + 9 + 1 = 12.
Constraints:
1 <= nums.length <= 100
0 <= nums[i] <= 400
198. House Robber
Medium
16.1K
317
Companies
You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security systems connected and it will automatically contact the police if two adjacent houses were broken into on the same night.
Given an integer array nums representing the amount of money of each house, return the maximum amount of money you can rob tonight without alerting the police.
Example 1:
Input: nums = [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4.
Example 2:
Input: nums = [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
Total amount you can rob = 2 + 9 + 1 = 12.
Constraints:
1 <= nums.length <= 100
0 <= nums[i] <= 400
LeetCode
House Robber - LeetCode
Can you solve this real interview question? House Robber - You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses…
https://leetcode.com/problems/longest-common-subsequence/
1143. Longest Common Subsequence
Medium
9.6K
110
Companies
Given two strings text1 and text2, return the length of their longest common subsequence. If there is no common subsequence, return 0.
A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.
For example, "ace" is a subsequence of "abcde".
A common subsequence of two strings is a subsequence that is common to both strings.
Example 1:
Input: text1 = "abcde", text2 = "ace"
Output: 3
Explanation: The longest common subsequence is "ace" and its length is 3.
Example 2:
Input: text1 = "abc", text2 = "abc"
Output: 3
Explanation: The longest common subsequence is "abc" and its length is 3.
Example 3:
Input: text1 = "abc", text2 = "def"
Output: 0
Explanation: There is no such common subsequence, so the result is 0.
Constraints:
1 <= text1.length, text2.length <= 1000
text1 and text2 consist of only lowercase English characters.
1143. Longest Common Subsequence
Medium
9.6K
110
Companies
Given two strings text1 and text2, return the length of their longest common subsequence. If there is no common subsequence, return 0.
A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.
For example, "ace" is a subsequence of "abcde".
A common subsequence of two strings is a subsequence that is common to both strings.
Example 1:
Input: text1 = "abcde", text2 = "ace"
Output: 3
Explanation: The longest common subsequence is "ace" and its length is 3.
Example 2:
Input: text1 = "abc", text2 = "abc"
Output: 3
Explanation: The longest common subsequence is "abc" and its length is 3.
Example 3:
Input: text1 = "abc", text2 = "def"
Output: 0
Explanation: There is no such common subsequence, so the result is 0.
Constraints:
1 <= text1.length, text2.length <= 1000
text1 and text2 consist of only lowercase English characters.
LeetCode
Longest Common Subsequence - LeetCode
Can you solve this real interview question? Longest Common Subsequence - Given two strings text1 and text2, return the length of their longest common subsequence. If there is no common subsequence, return 0.
A subsequence of a string is a new string generated…
A subsequence of a string is a new string generated…
https://leetcode.com/problems/implement-queue-using-stacks/
232. Implement Queue using Stacks
Easy
5.2K
314
Companies
Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should support all the functions of a normal queue (push, peek, pop, and empty).
Implement the MyQueue class:
void push(int x) Pushes element x to the back of the queue.
int pop() Removes the element from the front of the queue and returns it.
int peek() Returns the element at the front of the queue.
boolean empty() Returns true if the queue is empty, false otherwise.
Notes:
You must use only standard operations of a stack, which means only push to top, peek/pop from top, size, and is empty operations are valid.
Depending on your language, the stack may not be supported natively. You may simulate a stack using a list or deque (double-ended queue) as long as you use only a stack's standard operations.
Example 1:
Input
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
Output
[null, null, null, 1, 1, false]
Explanation
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false
Constraints:
1 <= x <= 9
At most 100 calls will be made to push, pop, peek, and empty.
All the calls to pop and peek are valid.
232. Implement Queue using Stacks
Easy
5.2K
314
Companies
Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should support all the functions of a normal queue (push, peek, pop, and empty).
Implement the MyQueue class:
void push(int x) Pushes element x to the back of the queue.
int pop() Removes the element from the front of the queue and returns it.
int peek() Returns the element at the front of the queue.
boolean empty() Returns true if the queue is empty, false otherwise.
Notes:
You must use only standard operations of a stack, which means only push to top, peek/pop from top, size, and is empty operations are valid.
Depending on your language, the stack may not be supported natively. You may simulate a stack using a list or deque (double-ended queue) as long as you use only a stack's standard operations.
Example 1:
Input
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
Output
[null, null, null, 1, 1, false]
Explanation
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false
Constraints:
1 <= x <= 9
At most 100 calls will be made to push, pop, peek, and empty.
All the calls to pop and peek are valid.
LeetCode
Implement Queue using Stacks - LeetCode
Can you solve this real interview question? Implement Queue using Stacks - Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should support all the functions of a normal queue (push, peek, pop, and empty).
Implement…
Implement…
https://leetcode.com/problems/evaluate-reverse-polish-notation/
150. Evaluate Reverse Polish Notation
Medium
5K
814
Companies
Evaluate the value of an arithmetic expression in Reverse Polish Notation.
Valid operators are +, -, *, and /. Each operand may be an integer or another expression.
Note that division between two integers should truncate toward zero.
It is guaranteed that the given RPN expression is always valid. That means the expression would always evaluate to a result, and there will not be any division by zero operation.
Example 1:
Input: tokens = ["2","1","+","3","*"]
Output: 9
Explanation: ((2 + 1) * 3) = 9
Example 2:
Input: tokens = ["4","13","5","/","+"]
Output: 6
Explanation: (4 + (13 / 5)) = 6
Example 3:
Input: tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
Output: 22
Explanation: ((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
Constraints:
1 <= tokens.length <= 104
tokens[i] is either an operator: "+", "-", "*", or "/", or an integer in the range [-200, 200].
150. Evaluate Reverse Polish Notation
Medium
5K
814
Companies
Evaluate the value of an arithmetic expression in Reverse Polish Notation.
Valid operators are +, -, *, and /. Each operand may be an integer or another expression.
Note that division between two integers should truncate toward zero.
It is guaranteed that the given RPN expression is always valid. That means the expression would always evaluate to a result, and there will not be any division by zero operation.
Example 1:
Input: tokens = ["2","1","+","3","*"]
Output: 9
Explanation: ((2 + 1) * 3) = 9
Example 2:
Input: tokens = ["4","13","5","/","+"]
Output: 6
Explanation: (4 + (13 / 5)) = 6
Example 3:
Input: tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
Output: 22
Explanation: ((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
Constraints:
1 <= tokens.length <= 104
tokens[i] is either an operator: "+", "-", "*", or "/", or an integer in the range [-200, 200].
LeetCode
Evaluate Reverse Polish Notation - LeetCode
Can you solve this real interview question? Evaluate Reverse Polish Notation - You are given an array of strings tokens that represents an arithmetic expression in a Reverse Polish Notation [http://en.wikipedia.org/wiki/Reverse_Polish_notation].
Evaluate…
Evaluate…
https://leetcode.com/problems/daily-temperatures/
739. Daily Temperatures
Medium
9.1K
208
Companies
Given an array of integers temperatures represents the daily temperatures, return an array answer such that answer[i] is the number of days you have to wait after the ith day to get a warmer temperature. If there is no future day for which this is possible, keep answer[i] == 0 instead.
Example 1:
Input: temperatures = [73,74,75,71,69,72,76,73]
Output: [1,1,4,2,1,1,0,0]
Example 2:
Input: temperatures = [30,40,50,60]
Output: [1,1,1,0]
Example 3:
Input: temperatures = [30,60,90]
Output: [1,1,0]
Constraints:
1 <= temperatures.length <= 105
30 <= temperatures[i] <= 100
739. Daily Temperatures
Medium
9.1K
208
Companies
Given an array of integers temperatures represents the daily temperatures, return an array answer such that answer[i] is the number of days you have to wait after the ith day to get a warmer temperature. If there is no future day for which this is possible, keep answer[i] == 0 instead.
Example 1:
Input: temperatures = [73,74,75,71,69,72,76,73]
Output: [1,1,4,2,1,1,0,0]
Example 2:
Input: temperatures = [30,40,50,60]
Output: [1,1,1,0]
Example 3:
Input: temperatures = [30,60,90]
Output: [1,1,0]
Constraints:
1 <= temperatures.length <= 105
30 <= temperatures[i] <= 100
LeetCode
Daily Temperatures - LeetCode
Can you solve this real interview question? Daily Temperatures - Given an array of integers temperatures represents the daily temperatures, return an array answer such that answer[i] is the number of days you have to wait after the ith day to get a warmer…
https://leetcode.com/problems/find-if-path-exists-in-graph/
1971. Find if Path Exists in Graph
Easy
2.3K
116
Companies
There is a bi-directional graph with n vertices, where each vertex is labeled from 0 to n - 1 (inclusive). The edges in the graph are represented as a 2D integer array edges, where each edges[i] = [ui, vi] denotes a bi-directional edge between vertex ui and vertex vi. Every vertex pair is connected by at most one edge, and no vertex has an edge to itself.
You want to determine if there is a valid path that exists from vertex source to vertex destination.
Given edges and the integers n, source, and destination, return true if there is a valid path from source to destination, or false otherwise.
Example 1:
Input: n = 3, edges = [[0,1],[1,2],[2,0]], source = 0, destination = 2
Output: true
Explanation: There are two paths from vertex 0 to vertex 2:
- 0 → 1 → 2
- 0 → 2
Example 2:
Input: n = 6, edges = [[0,1],[0,2],[3,5],[5,4],[4,3]], source = 0, destination = 5
Output: false
Explanation: There is no path from vertex 0 to vertex 5.
1971. Find if Path Exists in Graph
Easy
2.3K
116
Companies
There is a bi-directional graph with n vertices, where each vertex is labeled from 0 to n - 1 (inclusive). The edges in the graph are represented as a 2D integer array edges, where each edges[i] = [ui, vi] denotes a bi-directional edge between vertex ui and vertex vi. Every vertex pair is connected by at most one edge, and no vertex has an edge to itself.
You want to determine if there is a valid path that exists from vertex source to vertex destination.
Given edges and the integers n, source, and destination, return true if there is a valid path from source to destination, or false otherwise.
Example 1:
Input: n = 3, edges = [[0,1],[1,2],[2,0]], source = 0, destination = 2
Output: true
Explanation: There are two paths from vertex 0 to vertex 2:
- 0 → 1 → 2
- 0 → 2
Example 2:
Input: n = 6, edges = [[0,1],[0,2],[3,5],[5,4],[4,3]], source = 0, destination = 5
Output: false
Explanation: There is no path from vertex 0 to vertex 5.
LeetCode
Find if Path Exists in Graph - LeetCode
Can you solve this real interview question? Find if Path Exists in Graph - There is a bi-directional graph with n vertices, where each vertex is labeled from 0 to n - 1 (inclusive). The edges in the graph are represented as a 2D integer array edges, where…