1.57K subscribers
577 photos
1 file
949 links
Don't miss a day to solve the problem
My leetcode graph - https://leetcode.com/SamoylenkoDmitry/
Download Telegram
https://leetcode.com/problems/snakes-and-ladders/
909. Snakes and Ladders
Medium
1.8K
512
Companies

You are given an n x n integer matrix board where the cells are labeled from 1 to n2 in a Boustrophedon style starting from the bottom left of the board (i.e. board[n - 1][0]) and alternating direction each row.

You start on square 1 of the board. In each move, starting from square curr, do the following:

Choose a destination square next with a label in the range [curr + 1, min(curr + 6, n2)].
This choice simulates the result of a standard 6-sided die roll: i.e., there are always at most 6 destinations, regardless of the size of the board.
If next has a snake or ladder, you must move to the destination of that snake or ladder. Otherwise, you move to next.
The game ends when you reach the square n2.

A board square on row r and column c has a snake or ladder if board[r][c] != -1. The destination of that snake or ladder is board[r][c]. Squares 1 and n2 do not have a snake or ladder.

Note that you only take a snake or ladder at most once per move. If the destination to a snake or ladder is the start of another snake or ladder, you do not follow the subsequent snake or ladder.

For example, suppose the board is [[-1,4],[-1,3]], and on the first move, your destination square is 2. You follow the ladder to square 3, but do not follow the subsequent ladder to 4.

Return the least number of moves required to reach the square n2. If it is not possible to reach the square, return -1.



Example 1:

Input: board = [[-1,-1,-1,-1,-1,-1],[-1,-1,-1,-1,-1,-1],[-1,-1,-1,-1,-1,-1],[-1,35,-1,-1,13,-1],[-1,-1,-1,-1,-1,-1],[-1,15,-1,-1,-1,-1]]
Output: 4
Explanation:
In the beginning, you start at square 1 (at row 5, column 0).
You decide to move to square 2 and must take the ladder to square 15.
You then decide to move to square 17 and must take the snake to square 13.
You then decide to move to square 14 and must take the ladder to square 35.
You then decide to move to square 36, ending the game.
This is the lowest possible number of moves to reach the last square, so return 4.

Example 2:

Input: board = [[-1,-1],[-1,3]]
Output: 1



Constraints:

n == board.length == board[i].length
2 <= n <= 20
grid[i][j] is either -1 or in the range [1, n2].
The squares labeled 1 and n2 do not have any ladders or snakes.
https://leetcode.com/problems/find-closest-node-to-given-two-nodes/
2359. Find Closest Node to Given Two Nodes
Medium
767
175
Companies

You are given a directed graph of n nodes numbered from 0 to n - 1, where each node has at most one outgoing edge.

The graph is represented with a given 0-indexed array edges of size n, indicating that there is a directed edge from node i to node edges[i]. If there is no outgoing edge from i, then edges[i] == -1.

You are also given two integers node1 and node2.

Return the index of the node that can be reached from both node1 and node2, such that the maximum between the distance from node1 to that node, and from node2 to that node is minimized. If there are multiple answers, return the node with the smallest index, and if no possible answer exists, return -1.

Note that edges may contain cycles.



Example 1:

Input: edges = [2,2,3,-1], node1 = 0, node2 = 1
Output: 2
Explanation: The distance from node 0 to node 2 is 1, and the distance from node 1 to node 2 is 1.
The maximum of those two distances is 1. It can be proven that we cannot get a node with a smaller maximum distance than 1, so we return node 2.

Example 2:

Input: edges = [1,2,-1], node1 = 0, node2 = 2
Output: 2
Explanation: The distance from node 0 to node 2 is 2, and the distance from node 2 to itself is 0.
The maximum of those two distances is 2. It can be proven that we cannot get a node with a smaller maximum distance than 2, so we return node 2.



Constraints:

n == edges.length
2 <= n <= 105
-1 <= edges[i] < n
edges[i] != i
0 <= node1, node2 < n
https://leetcode.com/problems/cheapest-flights-within-k-stops/
787. Cheapest Flights Within K Stops
Medium
6.8K
303
Companies

There are n cities connected by some number of flights. You are given an array flights where flights[i] = [fromi, toi, pricei] indicates that there is a flight from city fromi to city toi with cost pricei.

You are also given three integers src, dst, and k, return the cheapest price from src to dst with at most k stops. If there is no such route, return -1.



Example 1:

Input: n = 4, flights = [[0,1,100],[1,2,100],[2,0,100],[1,3,600],[2,3,200]], src = 0, dst = 3, k = 1
Output: 700
Explanation:
The graph is shown above.
The optimal path with at most 1 stop from city 0 to 3 is marked in red and has cost 100 + 600 = 700.
Note that the path through cities [0,1,2,3] is cheaper but is invalid because it uses 2 stops.

Example 2:

Input: n = 3, flights = [[0,1,100],[1,2,100],[0,2,500]], src = 0, dst = 2, k = 1
Output: 200
Explanation:
The graph is shown above.
The optimal path with at most 1 stop from city 0 to 2 is marked in red and has cost 100 + 100 = 200.

Example 3:

Input: n = 3, flights = [[0,1,100],[1,2,100],[0,2,500]], src = 0, dst = 2, k = 0
Output: 500
Explanation:
The graph is shown above.
The optimal path with no stops from city 0 to 2 is marked in red and has cost 500.



Constraints:

1 <= n <= 100
0 <= flights.length <= (n * (n - 1) / 2)
flights[i].length == 3
0 <= fromi, toi < n
fromi != toi
1 <= pricei <= 104
There will not be any multiple flights between two cities.
0 <= src, dst, k < n
src != dst
https://leetcode.com/problems/concatenated-words/
472. Concatenated Words
Hard
2.7K
244
Companies

Given an array of strings words (without duplicates), return all the concatenated words in the given list of words.

A concatenated word is defined as a string that is comprised entirely of at least two shorter words in the given array.



Example 1:

Input: words = ["cat","cats","catsdogcats","dog","dogcatsdog","hippopotamuses","rat","ratcatdogcat"]
Output: ["catsdogcats","dogcatsdog","ratcatdogcat"]
Explanation: "catsdogcats" can be concatenated by "cats", "dog" and "cats";
"dogcatsdog" can be concatenated by "dog", "cats" and "dog";
"ratcatdogcat" can be concatenated by "rat", "cat", "dog" and "cat".

Example 2:

Input: words = ["cat","dog","catdog"]
Output: ["catdog"]



Constraints:

1 <= words.length <= 104
1 <= words[i].length <= 30
words[i] consists of only lowercase English letters.
All the strings of words are unique.
1 <= sum(words[i].length) <= 105
https://leetcode.com/problems/data-stream-as-disjoint-intervals/
352. Data Stream as Disjoint Intervals
Hard
1.1K
249
Companies

Given a data stream input of non-negative integers a1, a2, ..., an, summarize the numbers seen so far as a list of disjoint intervals.

Implement the SummaryRanges class:

SummaryRanges() Initializes the object with an empty stream.
void addNum(int value) Adds the integer value to the stream.
int[][] getIntervals() Returns a summary of the integers in the stream currently as a list of disjoint intervals [starti, endi]. The answer should be sorted by starti.



Example 1:

Input
["SummaryRanges", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals"]
[[], [1], [], [3], [], [7], [], [2], [], [6], []]
Output
[null, null, [[1, 1]], null, [[1, 1], [3, 3]], null, [[1, 1], [3, 3], [7, 7]], null, [[1, 3], [7, 7]], null, [[1, 3], [6, 7]]]

Explanation
SummaryRanges summaryRanges = new SummaryRanges();
summaryRanges.addNum(1); // arr = [1]
summaryRanges.getIntervals(); // return [[1, 1]]
summaryRanges.addNum(3); // arr = [1, 3]
summaryRanges.getIntervals(); // return [[1, 1], [3, 3]]
summaryRanges.addNum(7); // arr = [1, 3, 7]
summaryRanges.getIntervals(); // return [[1, 1], [3, 3], [7, 7]]
summaryRanges.addNum(2); // arr = [1, 2, 3, 7]
summaryRanges.getIntervals(); // return [[1, 3], [7, 7]]
summaryRanges.addNum(6); // arr = [1, 2, 3, 6, 7]
summaryRanges.getIntervals(); // return [[1, 3], [6, 7]]



Constraints:

0 <= value <= 104
At most 3 * 104 calls will be made to addNum and getIntervals.



Follow up: What if there are lots of merges and the number of disjoint intervals is small compared to the size of the data stream?
https://leetcode.com/problems/lfu-cache/
460. LFU Cache
Hard
4.2K
252
Companies

Design and implement a data structure for a Least Frequently Used (LFU) cache.

Implement the LFUCache class:

LFUCache(int capacity) Initializes the object with the capacity of the data structure.
int get(int key) Gets the value of the key if the key exists in the cache. Otherwise, returns -1.
void put(int key, int value) Update the value of the key if present, or inserts the key if not already present. When the cache reaches its capacity, it should invalidate and remove the least frequently used key before inserting a new item. For this problem, when there is a tie (i.e., two or more keys with the same frequency), the least recently used key would be invalidated.

To determine the least frequently used key, a use counter is maintained for each key in the cache. The key with the smallest use counter is the least frequently used key.

When a key is first inserted into the cache, its use counter is set to 1 (due to the put operation). The use counter for a key in the cache is incremented either a get or put operation is called on it.

The functions get and put must each run in O(1) average time complexity.



Example 1:

Input
["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]

Explanation
// cnt(x) = the use counter for key x
// cache=[] will show the last used order for tiebreakers (leftmost element is most recent)
LFUCache lfu = new LFUCache(2);
lfu.put(1, 1); // cache=[1,_], cnt(1)=1
lfu.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1
lfu.get(1); // return 1
// cache=[1,2], cnt(2)=1, cnt(1)=2
lfu.put(3, 3); // 2 is the LFU key because cnt(2)=1 is the smallest, invalidate 2.
// cache=[3,1], cnt(3)=1, cnt(1)=2
lfu.get(2); // return -1 (not found)
lfu.get(3); // return 3
// cache=[3,1], cnt(3)=2, cnt(1)=2
lfu.put(4, 4); // Both 1 and 3 have the same cnt, but 1 is LRU, invalidate 1.
// cache=[4,3], cnt(4)=1, cnt(3)=2
lfu.get(1); // return -1 (not found)
lfu.get(3); // return 3
// cache=[3,4], cnt(4)=1, cnt(3)=3
lfu.get(4); // return 4
// cache=[4,3], cnt(4)=2, cnt(3)=3



Constraints:

0 <= capacity <= 104
0 <= key <= 105
0 <= value <= 109
At most 2 * 105 calls will be made to get and put.
https://leetcode.com/problems/n-th-tribonacci-number/
1137. N-th Tribonacci Number
Easy
2.9K
143
Companies

The Tribonacci sequence Tn is defined as follows:

T0 = 0, T1 = 1, T2 = 1, and Tn+3 = Tn + Tn+1 + Tn+2 for n >= 0.

Given n, return the value of Tn.



Example 1:

Input: n = 4
Output: 4
Explanation:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4

Example 2:

Input: n = 25
Output: 1389537



Constraints:

0 <= n <= 37
The answer is guaranteed to fit within a 32-bit integer, ie. answer <= 2^31 - 1.
https://leetcode.com/problems/best-team-with-no-conflicts/
1626. Best Team With No Conflicts
Medium
1.5K
45
Companies

You are the manager of a basketball team. For the upcoming tournament, you want to choose the team with the highest overall score. The score of the team is the sum of scores of all the players in the team.

However, the basketball team is not allowed to have conflicts. A conflict exists if a younger player has a strictly higher score than an older player. A conflict does not occur between players of the same age.

Given two lists, scores and ages, where each scores[i] and ages[i] represents the score and age of the ith player, respectively, return the highest overall score of all possible basketball teams.



Example 1:

Input: scores = [1,3,5,10,15], ages = [1,2,3,4,5]
Output: 34
Explanation: You can choose all the players.

Example 2:

Input: scores = [4,5,6,5], ages = [2,1,2,1]
Output: 16
Explanation: It is best to choose the last 3 players. Notice that you are allowed to choose multiple people of the same age.

Example 3:

Input: scores = [1,2,3,5], ages = [8,9,10,1]
Output: 6
Explanation: It is best to choose the first 3 players.



Constraints:

1 <= scores.length, ages.length <= 1000
scores.length == ages.length
1 <= scores[i] <= 106
1 <= ages[i] <= 1000
https://leetcode.com/problems/greatest-common-divisor-of-strings/
1071. Greatest Common Divisor of Strings
Easy
2.1K
361
Companies

For two strings s and t, we say "t divides s" if and only if s = t + ... + t (i.e., t is concatenated with itself one or more times).

Given two strings str1 and str2, return the largest string x such that x divides both str1 and str2.



Example 1:

Input: str1 = "ABCABC", str2 = "ABC"
Output: "ABC"

Example 2:

Input: str1 = "ABABAB", str2 = "ABAB"
Output: "AB"

Example 3:

Input: str1 = "LEET", str2 = "CODE"
Output: ""



Constraints:

1 <= str1.length, str2.length <= 1000
str1 and str2 consist of English uppercase letters.
https://leetcode.com/problems/verifying-an-alien-dictionary/
953. Verifying an Alien Dictionary
Easy
3.7K
1.2K
Companies

In an alien language, surprisingly, they also use English lowercase letters, but possibly in a different order. The order of the alphabet is some permutation of lowercase letters.

Given a sequence of words written in the alien language, and the order of the alphabet, return true if and only if the given words are sorted lexicographically in this alien language.



Example 1:

Input: words = ["hello","leetcode"], order = "hlabcdefgijkmnopqrstuvwxyz"
Output: true
Explanation: As 'h' comes before 'l' in this language, then the sequence is sorted.

Example 2:

Input: words = ["word","world","row"], order = "worldabcefghijkmnpqstuvxyz"
Output: false
Explanation: As 'd' comes after 'l' in this language, then words[0] > words[1], hence the sequence is unsorted.

Example 3:

Input: words = ["apple","app"], order = "abcdefghijklmnopqrstuvwxyz"
Output: false
Explanation: The first three characters "app" match, and the second string is shorter (in size.) According to lexicographical rules "apple" > "app", because 'l' > '∅', where '∅' is defined as the blank character which is less than any other character (More info).



Constraints:

1 <= words.length <= 100
1 <= words[i].length <= 20
order.length == 26
All characters in words[i] and order are English lowercase letters.
https://leetcode.com/problems/zigzag-conversion/
6. Zigzag Conversion
Medium
5.2K
11K
Companies

The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility)

P A H N
A P L S I I G
Y I R

And then read line by line: "PAHNAPLSIIGYIR"

Write the code that will take a string and make this conversion given a number of rows:

string convert(string s, int numRows);



Example 1:

Input: s = "PAYPALISHIRING", numRows = 3
Output: "PAHNAPLSIIGYIR"

Example 2:

Input: s = "PAYPALISHIRING", numRows = 4
Output: "PINALSIGYAHRPI"
Explanation:
P I N
A L S I G
Y A H R
P I

Example 3:

Input: s = "A", numRows = 1
Output: "A"



Constraints:

1 <= s.length <= 1000
s consists of English letters (lower-case and upper-case), ',' and '.'.
1 <= numRows <= 1000
https://leetcode.com/problems/permutation-in-string/
567. Permutation in String
Medium
8.5K
276
Companies

Given two strings s1 and s2, return true if s2 contains a permutation of s1, or false otherwise.

In other words, return true if one of s1's permutations is the substring of s2.



Example 1:

Input: s1 = "ab", s2 = "eidbaooo"
Output: true
Explanation: s2 contains one permutation of s1 ("ba").

Example 2:

Input: s1 = "ab", s2 = "eidboaoo"
Output: false



Constraints:

1 <= s1.length, s2.length <= 104
s1 and s2 consist of lowercase English letters.
https://leetcode.com/problems/find-all-anagrams-in-a-string/
438. Find All Anagrams in a String
Medium
10K
297
Companies

Given two strings s and p, return an array of all the start indices of p's anagrams in s. You may return the answer in any order.

An Anagram is a word or phrase formed by rearranging the letters of a different word or phrase, typically using all the original letters exactly once.



Example 1:

Input: s = "cbaebabacd", p = "abc"
Output: [0,6]
Explanation:
The substring with start index = 0 is "cba", which is an anagram of "abc".
The substring with start index = 6 is "bac", which is an anagram of "abc".

Example 2:

Input: s = "abab", p = "ab"
Output: [0,1,2]
Explanation:
The substring with start index = 0 is "ab", which is an anagram of "ab".
The substring with start index = 1 is "ba", which is an anagram of "ab".
The substring with start index = 2 is "ab", which is an anagram of "ab".



Constraints:

1 <= s.length, p.length <= 3 * 104
s and p consist of lowercase English letters.
https://leetcode.com/problems/shuffle-the-array/
1470. Shuffle the Array
Easy
3.9K
230
Companies

Given the array nums consisting of 2n elements in the form [x1,x2,...,xn,y1,y2,...,yn].

Return the array in the form [x1,y1,x2,y2,...,xn,yn].



Example 1:

Input: nums = [2,5,1,3,4,7], n = 3
Output: [2,3,5,4,1,7]
Explanation: Since x1=2, x2=5, x3=1, y1=3, y2=4, y3=7 then the answer is [2,3,5,4,1,7].

Example 2:

Input: nums = [1,2,3,4,4,3,2,1], n = 4
Output: [1,4,2,3,3,2,4,1]

Example 3:

Input: nums = [1,1,2,2], n = 2
Output: [1,2,1,2]



Constraints:

1 <= n <= 500
nums.length == 2n
1 <= nums[i] <= 10^3
https://leetcode.com/problems/fruit-into-baskets/
904. Fruit Into Baskets
Medium
2.5K
187
Companies

You are visiting a farm that has a single row of fruit trees arranged from left to right. The trees are represented by an integer array fruits where fruits[i] is the type of fruit the ith tree produces.

You want to collect as much fruit as possible. However, the owner has some strict rules that you must follow:

You only have two baskets, and each basket can only hold a single type of fruit. There is no limit on the amount of fruit each basket can hold.
Starting from any tree of your choice, you must pick exactly one fruit from every tree (including the start tree) while moving to the right. The picked fruits must fit in one of your baskets.
Once you reach a tree with fruit that cannot fit in your baskets, you must stop.

Given the integer array fruits, return the maximum number of fruits you can pick.



Example 1:

Input: fruits = [1,2,1]
Output: 3
Explanation: We can pick from all 3 trees.

Example 2:

Input: fruits = [0,1,2,2]
Output: 3
Explanation: We can pick from trees [1,2,2].
If we had started at the first tree, we would only pick from trees [0,1].

Example 3:

Input: fruits = [1,2,3,2,2]
Output: 4
Explanation: We can pick from trees [2,3,2,2].
If we had started at the first tree, we would only pick from trees [1,2].



Constraints:

1 <= fruits.length <= 105
0 <= fruits[i] < fruits.length
https://leetcode.com/problems/jump-game-ii/
45. Jump Game II
Medium
11K
381
Companies

You are given a 0-indexed array of integers nums of length n. You are initially positioned at nums[0].

Each element nums[i] represents the maximum length of a forward jump from index i. In other words, if you are at nums[i], you can jump to any nums[i + j] where:

0 <= j <= nums[i] and
i + j < n

Return the minimum number of jumps to reach nums[n - 1]. The test cases are generated such that you can reach nums[n - 1].



Example 1:

Input: nums = [2,3,1,1,4]
Output: 2
Explanation: The minimum number of jumps to reach the last index is 2. Jump 1 step from index 0 to 1, then 3 steps to the last index.

Example 2:

Input: nums = [2,3,0,1,4]
Output: 2



Constraints:

1 <= nums.length <= 104
0 <= nums[i] <= 1000
https://leetcode.com/problems/naming-a-company/
2306. Naming a Company
Hard
784
38
Companies

You are given an array of strings ideas that represents a list of names to be used in the process of naming a company. The process of naming a company is as follows:

Choose 2 distinct names from ideas, call them ideaA and ideaB.
Swap the first letters of ideaA and ideaB with each other.
If both of the new names are not found in the original ideas, then the name ideaA ideaB (the concatenation of ideaA and ideaB, separated by a space) is a valid company name.
Otherwise, it is not a valid name.

Return the number of distinct valid names for the company.



Example 1:

Input: ideas = ["coffee","donuts","time","toffee"]
Output: 6
Explanation: The following selections are valid:
- ("coffee", "donuts"): The company name created is "doffee conuts".
- ("donuts", "coffee"): The company name created is "conuts doffee".
- ("donuts", "time"): The company name created is "tonuts dime".
- ("donuts", "toffee"): The company name created is "tonuts doffee".
- ("time", "donuts"): The company name created is "dime tonuts".
- ("toffee", "donuts"): The company name created is "doffee tonuts".
Therefore, there are a total of 6 distinct company names.

The following are some examples of invalid selections:
- ("coffee", "time"): The name "toffee" formed after swapping already exists in the original array.
- ("time", "toffee"): Both names are still the same after swapping and exist in the original array.
- ("coffee", "toffee"): Both names formed after swapping already exist in the original array.

Example 2:

Input: ideas = ["lack","back"]
Output: 0
Explanation: There are no valid selections. Therefore, 0 is returned.



Constraints:

2 <= ideas.length <= 5 * 104
1 <= ideas[i].length <= 10
ideas[i] consists of lowercase English letters.
All the strings in ideas are unique.
https://leetcode.com/problems/as-far-from-land-as-possible/
1162. As Far from Land as Possible
Medium
2.9K
74
Companies

Given an n x n grid containing only values 0 and 1, where 0 represents water and 1 represents land, find a water cell such that its distance to the nearest land cell is maximized, and return the distance. If no land or water exists in the grid, return -1.

The distance used in this problem is the Manhattan distance: the distance between two cells (x0, y0) and (x1, y1) is |x0 - x1| + |y0 - y1|.



Example 1:

Input: grid = [[1,0,1],[0,0,0],[1,0,1]]
Output: 2
Explanation: The cell (1, 1) is as far as possible from all the land with distance 2.

Example 2:

Input: grid = [[1,0,0],[0,0,0],[0,0,0]]
Output: 4
Explanation: The cell (2, 2) is as far as possible from all the land with distance 4.



Constraints:

n == grid.length
n == grid[i].length
1 <= n <= 100
grid[i][j] is 0 or 1
https://leetcode.com/problems/shortest-path-with-alternating-colors/
1129. Shortest Path with Alternating Colors
Medium
2.2K
106
Companies

You are given an integer n, the number of nodes in a directed graph where the nodes are labeled from 0 to n - 1. Each edge is red or blue in this graph, and there could be self-edges and parallel edges.

You are given two arrays redEdges and blueEdges where:

redEdges[i] = [ai, bi] indicates that there is a directed red edge from node ai to node bi in the graph, and
blueEdges[j] = [uj, vj] indicates that there is a directed blue edge from node uj to node vj in the graph.

Return an array answer of length n, where each answer[x] is the length of the shortest path from node 0 to node x such that the edge colors alternate along the path, or -1 if such a path does not exist.



Example 1:

Input: n = 3, redEdges = [[0,1],[1,2]], blueEdges = []
Output: [0,1,-1]

Example 2:

Input: n = 3, redEdges = [[0,1]], blueEdges = [[2,1]]
Output: [0,1,-1]



Constraints:

1 <= n <= 100
0 <= redEdges.length, blueEdges.length <= 400
redEdges[i].length == blueEdges[j].length == 2
0 <= ai, bi, uj, vj < n
https://leetcode.com/problems/minimum-fuel-cost-to-report-to-the-capital/
2477. Minimum Fuel Cost to Report to the Capital
Medium
866
29
Companies

There is a tree (i.e., a connected, undirected graph with no cycles) structure country network consisting of n cities numbered from 0 to n - 1 and exactly n - 1 roads. The capital city is city 0. You are given a 2D integer array roads where roads[i] = [ai, bi] denotes that there exists a bidirectional road connecting cities ai and bi.

There is a meeting for the representatives of each city. The meeting is in the capital city.

There is a car in each city. You are given an integer seats that indicates the number of seats in each car.

A representative can use the car in their city to travel or change the car and ride with another representative. The cost of traveling between two cities is one liter of fuel.

Return the minimum number of liters of fuel to reach the capital city.



Example 1:

Input: roads = [[0,1],[0,2],[0,3]], seats = 5
Output: 3
Explanation:
- Representative1 goes directly to the capital with 1 liter of fuel.
- Representative2 goes directly to the capital with 1 liter of fuel.
- Representative3 goes directly to the capital with 1 liter of fuel.
It costs 3 liters of fuel at minimum.
It can be proven that 3 is the minimum number of liters of fuel needed.

Example 2:

Input: roads = [[3,1],[3,2],[1,0],[0,4],[0,5],[4,6]], seats = 2
Output: 7
Explanation:
- Representative2 goes directly to city 3 with 1 liter of fuel.
- Representative2 and representative3 go together to city 1 with 1 liter of fuel.
- Representative2 and representative3 go together to the capital with 1 liter of fuel.
- Representative1 goes directly to the capital with 1 liter of fuel.
- Representative5 goes directly to the capital with 1 liter of fuel.
- Representative6 goes directly to city 4 with 1 liter of fuel.
- Representative4 and representative6 go together to the capital with 1 liter of fuel.
It costs 7 liters of fuel at minimum.
It can be proven that 7 is the minimum number of liters of fuel needed.

Example 3:

Input: roads = [], seats = 1
Output: 0
Explanation: No representatives need to travel to the capital city.



Constraints:

1 <= n <= 105
roads.length == n - 1
roads[i].length == 2
0 <= ai, bi < n
ai != bi
roads represents a valid tree.
1 <= seats <= 105