Студенческий семинар по маломерной топологии
725 subscribers
207 photos
13 videos
1 file
419 links
Санкт-Петербургский математический центр им. Леонарда Эйлера


Видео: youtube.com/@LDTSS и @ldtss_backup
Каталог: t.me/ldtss/527

t.me/boost/ldtss

Обсуждение: @ldtssconvo
Обратная связь: @ldtssbot

eimi.ru/low-dimensional-topology-student-seminar
Download Telegram
В субботу (4 ноября) в 13:40 в 102 ауд. (14 линия В.О., дом 29Б) и в Zoom канале ID 958-115-833 (пароль стандартный, спросить у @ilya_s_alekseev):

«О Трюке Александера»
Даша Аксенова

Одной из базовых конструкций топологии является Трюк Александра (1923), который утверждает, что каждый гомеоморфизм n-мерного шара, тождественный на граничной сфере, связан с тождественным гомеоморфизмом изотопией, неподвижной на этой сфере.
Мы поговорим о фундаментальных теоремах маломерной топологии, в доказательстве которых Трюк Александера выступает важным инструментом. Обсудим его новые обобщения, доказательство одного из которых рассмотрим подробно, а также разберем примеры применения этого варианта Трюка.
🔥82👍1
❗️Завтрашний доклад переносится на следующую неделю. Мы приглашаем всех присоединиться к школе-конференции по алгебре.

В программе следующие курсы:

«Введение в схемы Гротендика»
И. Панин

«Одна открытая проблема о группе SL_2»
А. Ставрова

«Аддитивные действия и соответствие Хассетта-Чинкеля»
Ю. Зайцева

Zoom (пароль 186856)
❤‍🔥42🔥1👌1
Forwarded from ПОМИ РАН
Студенческий семинар по маломерной топологии

«О Трюке Александера»
Д. Аксенова

11 ноября в 13:40
14 линия В.О., 29, ауд. 201
Zoom (ID 958-115-833, пароль стандартный)
YouTube-канал

Одной из базовых конструкций топологии является Трюк Александра (1923), который утверждает, что каждый гомеоморфизм n-мерного шара, тождественный на граничной сфере, связан с тождественным гомеоморфизмом изотопией, неподвижной на этой сфере.

Мы поговорим о фундаментальных теоремах маломерной топологии, в доказательстве которых Трюк Александера выступает важным инструментом. Обсудим его новые обобщения, доказательство одного из которых рассмотрим подробно, а также разберем примеры применения этого варианта Трюка.
3👍2🔥2🗿1
В субботу (25 ноября) в 13:40 в 201 ауд. (14 линия В.О., дом 29Б) и в Zoom канале ID 958-115-833 (пароль стандартный, спросить у @ilya_s_alekseev):

«Как построить альтернированный узел?»
Артём Алёшин

Доклад посвящен развитию недавних результатов И. С. Алексеева, А. В. Малютина и А. М. Вершика о генерации семейства попарно различных альтернированных узлов. Мы покажем, как из любой диаграммы сделать альтернированную, поговорим о гипотезах Тейта, позволяющих понять, какие альтернированные диаграммы имеют минимальное количество перекрестков, и обсудим, как с помощью флайпов можно различать узлы, представленные такими диаграммами.
🔥4❤‍🔥11👍1
В субботу (2 декабря) в 13:40 в 120 ауд. (14 линия В.О., дом 29Б) и в Zoom канале ID 958-115-833 (пароль стандартный, спросить у @ilya_s_alekseev):

«Формулы Пуанкаре — Гуревича и Хопфа»
Илья Алексеев

Доклад посвящен доказательству теорем Пуанкаре — Гуревича и Хопфа, связывающих первую и вторую группы (сингулярных) гомологий топологического пространства с его фундаментальной группой. Кроме всего прочего, мы покажем, что коммутант фундаментальной группы совпадает с множеством гомотопических классов петель, ограничивающих некоторую (сингулярную) компактную ориентируемую поверхность, и что двумерные циклы в топологическом пространстве соответствуют коммутаторным тождествам в его фундаментальной группе. Доклад основан на заметке A. Putman, «Hopf’s theorem via geometry».
10❤‍🔥3🔥3
В субботу (9 декабря) в 13:40 в 201 ауд. (14 линия В.О., дом 29Б) и в Zoom канале ID 958-115-833 (пароль стандартный, спросить у @ilya_s_alekseev):

«Отображения с заданными бордмановскими особенностями — 7»
Андрей Рябичев
❤‍🔥71
Пусть даны два многообразия M и N. Хотелось бы научиться строить отображения f: M→N, имеющее критические точки заранее заданного типа в заранее заданных подмножествах M, либо доказывать, что таких отображений не существует.
Я начну с результатов Смейла — Хирша о погружениях и Элиашберга о погружениях со складками (и расскажу интуитивные идеи их доказательств, если позволит время). Затем я напомню классификацию особенностей по Тому — Бордману и введу естественное обобщение предыдущих теорем (ещё, может, скажу пару слов про работы Андо на ту же тему, но немного в другом направлении).
К сожалению, пока это обобщение существует только в случае dim M = dim N. Тем не менее, с помощью него легко оценить, например, существует ли отображение между поверхностями, имеющее заданные локусы складок и сборок, или решить аналогичную трёхмерную задачку — эти примеры я рассчитываю подробно разобрать в конце. Всё это написано в моей диссертации, причём даже на русском языке, но что делать в случае dim M ≠ dim N, к сожалению, пока непонятно, а значит, это самое интересное!
8👍1🔥1
В субботу (16 декабря) в 13:40 в 120 ауд. (14 линия В.О., дом 29Б) и в Zoom канале ID 958-115-833 (пароль стандартный, спросить у @ilya_s_alekseev):

«Отображения с заданными бордмановскими особенностями — 14»
Андрей Рябичев
👍2
На прошлом докладе мы обсудили, как по послойно-инъективному морфизму касательных расслоений TM → TN строить погружение многообразий M → N (теорема Смейла — Хирша), а по послойному изоморфизму T^S M → TN — погружение M → N со складками в S (теорема Элиашберга).

Но как контролировать другие особенности гладких отображений M → N, более сложные, чем складки?

В этот раз я расскажу об аналоге векторного расслоения T^S M, в терминах которого легко обобщается теорема Элиашберга. В размерности 2 для заданных локусов складок C и сборок P в M расслоение T^{CP} M строится путём простых переклеек в окрестности C и P. Мы вычислим его харклассы и докажем необходимое и достаточное условие, при котором существует отображение поверхностей с заданными складками и сборками.

В общем случае известна стратификация множества Σ(f) критических точек общего гладкого отображения f:M→N, приходящая из естественной стратификации пространства струй J(M,N). По этой стратификации гипотетически можно понять схему переклейки, позволяющую получить f*TN из TM, но я не знаю, как понять её! Мы поговорим об этом и похожих смежных вопросах.

Для понимания доклада не требуется знакомства с предыдущей частью, состоявшейся 9 декабря (хотя и не повредит), достаточно владения простыми приёмами работы с гладкими отображениями и векторными расслоениями.
❤‍🔥32🔥2