Laisky's Notes
实际上特德姜的《你一生的故事》讲述的就是这个观点。(特德姜的特色就是运用数学原理写科幻小说)。 当主角学会了七肢桶的语言后,就觉醒了时空意识。这也是为什么她会对女儿的死无动于衷,因为所有的事情都会发生,你只是观察到了时空的一个切面。 但这并不是说平行时空或世界线,因为不同事件的发生概率是不一样的。这个概率不是用来区分必然性和偶然性(所有事情都是必然),而是用来计算和结局的相似度,最相似的概率会作为过程显现出来。光会遍历所有的路径,但是你只能观测到最短路径。然而它确实遍历了所有的路径,因为你能观测到干涉现象。…
反正快放假了,且容许我继续就这个话题聊一聊。
《Stories of Your Life and Others》(你一生的故事)是一本非常好的书,然而改编的电影《Arrival》(降临)完全背离了原著的精神。但是这并不能说电影不好,实际上这电影在豆瓣上还有 7.8 分,并不低。
同样类似的不得不提菲利普·迪克(Philip K. Dick,简称 PKD)的《Do Androids Dream of Electric Sheep?》(仿生人会梦到电子羊吗?)所改编的《Blade Runner》(银翼杀手)。《Blade Runner》在近代取得了非常高的口碑,但是它的整个故事其实也完全背离了原著的精神内核。
《Blade Runner》以赛博朋克而闻名,但是 PKD 的一系列科幻小说的核心内核,我认为和《Stories of Your Life and Others》有着异曲同工之妙。都是在探讨世界的多面性,世界上各种各样的可能性都在同步发生,而我们只看到了其中的一小部分。
特德姜笔下的主角升华了,可以从超脱的角度看待这一切。而 PKD 的主角深陷其中,甚至于它自身的存在都在世界的多面性中变得模糊不清,世界似乎变成了一团浓雾,不同的可能性在其中交织,这座大楼上一会儿挂着纳粹的旗帜,一会儿又是美利坚的旗帜(《The Man in the High Castle》(高堡奇人))。
实话说,PKD 是唯一一个经常能把我惊吓到夜不能寐的作者,虽然他的故事并不恐怖,只是描述他所看见的世界破裂的缝隙。
《Stories of Your Life and Others》(你一生的故事)是一本非常好的书,然而改编的电影《Arrival》(降临)完全背离了原著的精神。但是这并不能说电影不好,实际上这电影在豆瓣上还有 7.8 分,并不低。
同样类似的不得不提菲利普·迪克(Philip K. Dick,简称 PKD)的《Do Androids Dream of Electric Sheep?》(仿生人会梦到电子羊吗?)所改编的《Blade Runner》(银翼杀手)。《Blade Runner》在近代取得了非常高的口碑,但是它的整个故事其实也完全背离了原著的精神内核。
《Blade Runner》以赛博朋克而闻名,但是 PKD 的一系列科幻小说的核心内核,我认为和《Stories of Your Life and Others》有着异曲同工之妙。都是在探讨世界的多面性,世界上各种各样的可能性都在同步发生,而我们只看到了其中的一小部分。
特德姜笔下的主角升华了,可以从超脱的角度看待这一切。而 PKD 的主角深陷其中,甚至于它自身的存在都在世界的多面性中变得模糊不清,世界似乎变成了一团浓雾,不同的可能性在其中交织,这座大楼上一会儿挂着纳粹的旗帜,一会儿又是美利坚的旗帜(《The Man in the High Castle》(高堡奇人))。
实话说,PKD 是唯一一个经常能把我惊吓到夜不能寐的作者,虽然他的故事并不恐怖,只是描述他所看见的世界破裂的缝隙。
👍3😱1
看完《Return To Space》,讲述 Elon Musk 关于让人类成为多星球文明(multi-planetary societies)的远景,以及 SpaceX 早期的挫折。
尤其重点讲述了 2020 年 5 月 30 日年龙飞船首次载人飞行的背后故事。这是自 2011 年 7 月 20 日 Atlantis 号航天飞机执行完 STS-135 号任务后,美国终于再次具备载人航天能力。(龙飞船的乘员中就有 STS-135 的成员)
希望能早日看到人类重归月球,甚至登陆火星。就算 Musk 有一万个缺点,但是空间探索的这个人类的边境上,这世上多如牛毛的富豪,确实只有他在拓展人类的疆域。
尤其重点讲述了 2020 年 5 月 30 日年龙飞船首次载人飞行的背后故事。这是自 2011 年 7 月 20 日 Atlantis 号航天飞机执行完 STS-135 号任务后,美国终于再次具备载人航天能力。(龙飞船的乘员中就有 STS-135 的成员)
希望能早日看到人类重归月球,甚至登陆火星。就算 Musk 有一万个缺点,但是空间探索的这个人类的边境上,这世上多如牛毛的富豪,确实只有他在拓展人类的疆域。
🐳7🌚1
如果各位假日期间剧荒,又想看点有深度的东西,推荐一下《The Problem With Jon Stewart》,有两季,一共 14 集。
在美剧《The Newsroom》第一季的第一集里有一个经典片段,主角 Will McAvoy 抛出了一大段“惊世骇俗”的关于舆论误人和教化世人的理想。
我个人觉得,在美国的大牌主持人中,形象最接近 Will 这个理想的就当属囧司徒(Jon Stewart)了。尤其是他前些年在 Apple Tv 上主持的《The Problem With Jon Stewart》,非常深刻尖锐地揭露和讽刺美国当下的社会问题,每集挑选一个矛盾点,广泛采访各方的实权人士,然后用幽默辛辣的嘉宾对谈将这些问题揭露得淋漓尽致。
尤其是因为 Jon Stewart 的地位和影响力,他真的能直接访谈到那些手握大权的重要人物。这和 Youtube 上那些小成本纪录片经常被实权人物吃闭门羹完全不同,你能直接听到这些事情在最初的计划者眼中是如何被诠释的。
在美剧《The Newsroom》第一季的第一集里有一个经典片段,主角 Will McAvoy 抛出了一大段“惊世骇俗”的关于舆论误人和教化世人的理想。
我个人觉得,在美国的大牌主持人中,形象最接近 Will 这个理想的就当属囧司徒(Jon Stewart)了。尤其是他前些年在 Apple Tv 上主持的《The Problem With Jon Stewart》,非常深刻尖锐地揭露和讽刺美国当下的社会问题,每集挑选一个矛盾点,广泛采访各方的实权人士,然后用幽默辛辣的嘉宾对谈将这些问题揭露得淋漓尽致。
尤其是因为 Jon Stewart 的地位和影响力,他真的能直接访谈到那些手握大权的重要人物。这和 Youtube 上那些小成本纪录片经常被实权人物吃闭门羹完全不同,你能直接听到这些事情在最初的计划者眼中是如何被诠释的。
❤3
话说前阵子每晚和家人吃晚饭时重看了火影忍者《Naruto》的主线剧情(700 集为止),也算是了却一个童年(青年?)时代的情怀。
实际上岸本齐史的剧本还是很有功底的,我觉得有一些值得称赞的地方:
1. 全剧没有精神失常的反派,甚至于没有严格意义上的反派。所有人都是出于自己的境遇,做出了自以为最好的选择。
2. 战力基本没有通货膨胀,至少 700 集以前基本维持了战力的平衡。
3. 这是一部基片,所有的 CP 都被拆了(甚至包括路人配角的夫妇),没有建立任何男女角色的感情线。(所有的感情线都是 700 集以后硬加的)。而且很容易看出来,作者不知道除了跪舔以外的男女关系…
4. 作者是个弟/兄控,每个人都有个深爱的兄弟。鼬对佐助的爱情表白在最后几十集里重放了大概有十次。
5. 鸣人感觉是个双相情感障碍
Ps. 哥哥早已洞察了一切,伊莲老师看完后去买了件鼬的体恤…
实际上岸本齐史的剧本还是很有功底的,我觉得有一些值得称赞的地方:
1. 全剧没有精神失常的反派,甚至于没有严格意义上的反派。所有人都是出于自己的境遇,做出了自以为最好的选择。
2. 战力基本没有通货膨胀,至少 700 集以前基本维持了战力的平衡。
3. 这是一部基片,所有的 CP 都被拆了(甚至包括路人配角的夫妇),没有建立任何男女角色的感情线。(所有的感情线都是 700 集以后硬加的)。而且很容易看出来,作者不知道除了跪舔以外的男女关系…
4. 作者是个弟/兄控,每个人都有个深爱的兄弟。鼬对佐助的爱情表白在最后几十集里重放了大概有十次。
5. 鸣人感觉是个双相情感障碍
Ps. 哥哥早已洞察了一切,伊莲老师看完后去买了件鼬的体恤…
❤4
https://youtu.be/EpMLAQbSYAw?si=t5IxWdWqSh0S9szH
《Age of Easy Money》对美国近数十年来的 easy money 政策的反思。
自次贷危机后,美国联邦储备局(FED)实行了大规模的量化宽松政策(Quantitative Easing, QE),即疯狂印钞,为大银行注资使其免于倒闭,这一政策在当年也被称为 Too Big to Fail。
这一政策的指导思想是政府可以在短期上发挥对经济的逆调控作用,当经济下行时,可以通过 QE 为市场注入血液;当经济过热时,可以通过加息来收紧货币。但是从过去二十年的经历来看,FED 的 QE 政策实际上无限制地鼓励了投机客的冒险行为,一旦大型投机客因为投机失败导致资金链紧张,FED 就会通过 QE 为其注资。这种政策导致了市场的不断泡沫化,也导致了美国经济的不断失衡。
更糟糕的是,如今回顾过去数十年的量化宽松,虽然为市场注入了大量低息甚至零息贷款,但是这些贷款并没有流入实体经济和基础设施,事实上几乎没有为美国带来任何实质性的建设。这些钱的很大部分实际上在金融市场空转,各个机构互相购买债券,互相借贷,互相投机,一场狂欢过后,除了通胀什么也没剩下。这也是当时美国人反感银行业,反对华尔街的主要原因之一,华尔街拿了 FED 救市的钱,却只管套利,而不是为美国经济做出实质性的贡献。这在片尾被称为“美国的政治缺陷,FED 可以印钞,却无法决定怎么花掉这些钱,华尔街可以花这些钱,但是华尔街的唯一目标就是套利”。
最后,Easy Money 的狂欢时代终将结束,接下来可能泡沫破灭的漫长回调。
《Age of Easy Money》对美国近数十年来的 easy money 政策的反思。
自次贷危机后,美国联邦储备局(FED)实行了大规模的量化宽松政策(Quantitative Easing, QE),即疯狂印钞,为大银行注资使其免于倒闭,这一政策在当年也被称为 Too Big to Fail。
这一政策的指导思想是政府可以在短期上发挥对经济的逆调控作用,当经济下行时,可以通过 QE 为市场注入血液;当经济过热时,可以通过加息来收紧货币。但是从过去二十年的经历来看,FED 的 QE 政策实际上无限制地鼓励了投机客的冒险行为,一旦大型投机客因为投机失败导致资金链紧张,FED 就会通过 QE 为其注资。这种政策导致了市场的不断泡沫化,也导致了美国经济的不断失衡。
更糟糕的是,如今回顾过去数十年的量化宽松,虽然为市场注入了大量低息甚至零息贷款,但是这些贷款并没有流入实体经济和基础设施,事实上几乎没有为美国带来任何实质性的建设。这些钱的很大部分实际上在金融市场空转,各个机构互相购买债券,互相借贷,互相投机,一场狂欢过后,除了通胀什么也没剩下。这也是当时美国人反感银行业,反对华尔街的主要原因之一,华尔街拿了 FED 救市的钱,却只管套利,而不是为美国经济做出实质性的贡献。这在片尾被称为“美国的政治缺陷,FED 可以印钞,却无法决定怎么花掉这些钱,华尔街可以花这些钱,但是华尔街的唯一目标就是套利”。
最后,Easy Money 的狂欢时代终将结束,接下来可能泡沫破灭的漫长回调。
YouTube
Age of Easy Money (full documentary) | FRONTLINE
High inflation. Fear of recession. Disruptions, like the collapse of Silicon Valley Bank. How did the U.S. economy get here? A two-hour documentary special traces the road to this moment, and the role of the Federal Reserve, the country’s central bank.
This…
This…
👍12
前几日逛宁波博物馆时看到纪念戚继光的文字,称他为“守护沿海居民的英雄”。
但其实明朝时期的倭寇主要都是由中国人组成的海商(海盗)集团,因为明朝实施海禁,东南亚地区庞大的海商集团失去了生存空间,其身份也就从海商变成了海盗。
戚继光执行的是中央王朝实施海禁的政策,实际上是妨碍了沿海居民与外界互通有无的贸易往来,而这肯定会让沿海居民的生活受到损害。做个不恰当的比喻,拿前几年的疫情来说,戚继光就是一个执行铁血封城的大白,而倭寇就是那些顶着风险跑外卖的黑骑手。戚继光杀伐果断地执行了封锁,中央王朝当然会把他当成英雄来纪念,但是作为普通居民,恐怕会有完全不同的感受。
网上搜一下有很多对“倭寇主要是中国人”这一说法的攻讦,但是列举的论点多为万历朝鲜战争(庆长文禄之役),这是在混淆视听,因为朝鲜战争是丰臣秀吉发起的侵略战争,性质和东南沿海的倭寇是完全不同的。此外,还有人列举日本浪人侵扰朝鲜的例子,这一点在《倭寇:海上历史》一书中有提及。朝鲜率先实施海禁,然后遭到了日本海商集团的侵扰,“倭寇”这一词也来自于此。后来明朝也实施海禁,然后也遇到了中国海商集团的侵扰,而且直接沿用了“倭寇”这一称谓。但实际上“倭寇”是一个泛称,并不特指日本人,洋人来华也被称为“倭寇”。
《倭寇:海上历史》这书就是详细追述了倭寇史在历史上的出现与变迁。
但其实明朝时期的倭寇主要都是由中国人组成的海商(海盗)集团,因为明朝实施海禁,东南亚地区庞大的海商集团失去了生存空间,其身份也就从海商变成了海盗。
戚继光执行的是中央王朝实施海禁的政策,实际上是妨碍了沿海居民与外界互通有无的贸易往来,而这肯定会让沿海居民的生活受到损害。做个不恰当的比喻,拿前几年的疫情来说,戚继光就是一个执行铁血封城的大白,而倭寇就是那些顶着风险跑外卖的黑骑手。戚继光杀伐果断地执行了封锁,中央王朝当然会把他当成英雄来纪念,但是作为普通居民,恐怕会有完全不同的感受。
网上搜一下有很多对“倭寇主要是中国人”这一说法的攻讦,但是列举的论点多为万历朝鲜战争(庆长文禄之役),这是在混淆视听,因为朝鲜战争是丰臣秀吉发起的侵略战争,性质和东南沿海的倭寇是完全不同的。此外,还有人列举日本浪人侵扰朝鲜的例子,这一点在《倭寇:海上历史》一书中有提及。朝鲜率先实施海禁,然后遭到了日本海商集团的侵扰,“倭寇”这一词也来自于此。后来明朝也实施海禁,然后也遇到了中国海商集团的侵扰,而且直接沿用了“倭寇”这一称谓。但实际上“倭寇”是一个泛称,并不特指日本人,洋人来华也被称为“倭寇”。
《倭寇:海上历史》这书就是详细追述了倭寇史在历史上的出现与变迁。
👏2
https://youtu.be/WXuK6gekU1Y?si=KnJ-WTTVCpgvEgT3
前阵子和人讨论 GPT 时聊到了 AlphaGo,我意识到我对 AlphaGo 不太了解,所以最近打算学习一下。而要了解 AlphaGo,首先都推荐观看这部纪录片。
2014 年深度学习(AlexNet)的论文发表,DeepMind 开始利用深度神经网络处理视频游戏,并很快转向了对围棋的研究。2015 年,DeepMind 邀请欧洲围棋冠军 Fan Hui 来到英国与 AlphaGo 对弈并全胜,这是围棋程序第一次战胜专业人类选手,Fan Hui 也以顾问的身份加入 AlphaGo。2016 年 DeepMind 前往韩国挑战世界冠军 Lee Sedol,并取得了四胜一负的成绩。这一系列的胜利引起了全球的关注,也让人们开始认识到了深度学习的威力。
值得注意的是,围棋的特色在于其近乎无穷的可能性,这也对应着近乎无穷的计算量,这使得围棋其实是一个直觉游戏(intuitive game),而不是一个需要深思熟虑的策略游戏(logic based game),毕竟任何所谓的深思熟虑在这无穷的可能性面前都是无谓的。专业棋手其实是通过记忆数以万计的棋谱来训练自己的直觉,然后使用直觉来对弈,这一训练方式和神经网络的工作原理非常相似,这也是深度神经网络最终能够击败人类的原因。
更多关于神经网络信息可以参考此前发过的介绍 GPT 的文: https://t.me/laiskynotes/144
我还在学习 AlphaGo 的论文,更多笔记日后再更新。
前阵子和人讨论 GPT 时聊到了 AlphaGo,我意识到我对 AlphaGo 不太了解,所以最近打算学习一下。而要了解 AlphaGo,首先都推荐观看这部纪录片。
2014 年深度学习(AlexNet)的论文发表,DeepMind 开始利用深度神经网络处理视频游戏,并很快转向了对围棋的研究。2015 年,DeepMind 邀请欧洲围棋冠军 Fan Hui 来到英国与 AlphaGo 对弈并全胜,这是围棋程序第一次战胜专业人类选手,Fan Hui 也以顾问的身份加入 AlphaGo。2016 年 DeepMind 前往韩国挑战世界冠军 Lee Sedol,并取得了四胜一负的成绩。这一系列的胜利引起了全球的关注,也让人们开始认识到了深度学习的威力。
值得注意的是,围棋的特色在于其近乎无穷的可能性,这也对应着近乎无穷的计算量,这使得围棋其实是一个直觉游戏(intuitive game),而不是一个需要深思熟虑的策略游戏(logic based game),毕竟任何所谓的深思熟虑在这无穷的可能性面前都是无谓的。专业棋手其实是通过记忆数以万计的棋谱来训练自己的直觉,然后使用直觉来对弈,这一训练方式和神经网络的工作原理非常相似,这也是深度神经网络最终能够击败人类的原因。
更多关于神经网络信息可以参考此前发过的介绍 GPT 的文: https://t.me/laiskynotes/144
我还在学习 AlphaGo 的论文,更多笔记日后再更新。
YouTube
AlphaGo - The Movie | Full award-winning documentary
With more board configurations than there are atoms in the universe, the ancient Chinese game of Go has long been considered a grand challenge for artificial intelligence.
On March 9, 2016, the worlds of Go and artificial intelligence collided in South…
On March 9, 2016, the worlds of Go and artificial intelligence collided in South…
❤1
https://laisky.notion.site/SwissMap-A-smaller-faster-Golang-Hash-Table-DoltHub-Blog-2fd1a48ab8a24e13ab9614409252ab9c?pvs=4
学习了一下 SwissTable,号称更快更轻的下一代 hash table。
一开始被 DoltHub 的这张 benchmark 图唬住了,内存接近于 array,吞吐居然还比 built-in map 快,太神奇了。仔细研究了一下源码后发现果然是幻觉,benchmark 的代码作弊了,因为频繁 rehash,把内存占用压缩到了极致,而 bench 中忽略了最耗时的
hashmap 的结构大同小异,底层都是一个固定长度的 array,key 通过哈希函数定位到 array 的地址,然后取得值。Go built-in map 使用的是开地址法(open-hashing),即不同的 key 可能会被映射到同一个 array 地址,然后这些不同的 item 通过一组以链表串联的 bucket 来存储,每个 bucket 存放 8 个 item。
而 swisstable 使用闭散列法(closed-hashing),即每个 key 都会有一个唯一的地址,不会有冲突。拿 Find 来解释 swissTable 的原理:
1. 计算 key 的 hash 值,前 56-bits 称为 H1、后 8-bits 称为 H2
2. 通过 H1 计算得到 array 的 index,array 的每一个 item 为 128-bits 长,由 16 个 8-bits H2 组成
3. 使用 SIMD 指令,并行比较 16 个 8-bits 地址,可以得知 key 是否存在于当前桶
a. 如果 key 存在,完成查找
b. 如果 key 不存在,且这 16 个地址都非空,说明 key 可能溢出到了下一个桶,index+1,继续循环(probing)
c. 如果 key 不存在,且这 16 个地址中存在空,说明 key 不存在
总的来说,swissTable 最大的亮点就是利用了 SIMD 的并行计算能力,实际上它和 open-hashing 类似也有 buckets,只是每个 bucket 的容量是固定的 16 个(取决于 SIMD 指令的宽度),而且不像拉链法那样可以串联,这样可以用 SIMD 一次性比对完 bucket 内的全部 keys,提高了性能,而且还能充分利用缓存的局部性。
至于说它省内存,我倾向于认为只是因为它的 load factor 略高一些所带来的些微优势,而没有本质区别,要注意不要被一些第三方的虚假宣传骗了。 #algorithm
学习了一下 SwissTable,号称更快更轻的下一代 hash table。
一开始被 DoltHub 的这张 benchmark 图唬住了,内存接近于 array,吞吐居然还比 built-in map 快,太神奇了。仔细研究了一下源码后发现果然是幻觉,benchmark 的代码作弊了,因为频繁 rehash,把内存占用压缩到了极致,而 bench 中忽略了最耗时的
Put 操作,然后只呈现了 Get 的性能😓。hashmap 的结构大同小异,底层都是一个固定长度的 array,key 通过哈希函数定位到 array 的地址,然后取得值。Go built-in map 使用的是开地址法(open-hashing),即不同的 key 可能会被映射到同一个 array 地址,然后这些不同的 item 通过一组以链表串联的 bucket 来存储,每个 bucket 存放 8 个 item。
而 swisstable 使用闭散列法(closed-hashing),即每个 key 都会有一个唯一的地址,不会有冲突。拿 Find 来解释 swissTable 的原理:
1. 计算 key 的 hash 值,前 56-bits 称为 H1、后 8-bits 称为 H2
2. 通过 H1 计算得到 array 的 index,array 的每一个 item 为 128-bits 长,由 16 个 8-bits H2 组成
3. 使用 SIMD 指令,并行比较 16 个 8-bits 地址,可以得知 key 是否存在于当前桶
a. 如果 key 存在,完成查找
b. 如果 key 不存在,且这 16 个地址都非空,说明 key 可能溢出到了下一个桶,index+1,继续循环(probing)
c. 如果 key 不存在,且这 16 个地址中存在空,说明 key 不存在
总的来说,swissTable 最大的亮点就是利用了 SIMD 的并行计算能力,实际上它和 open-hashing 类似也有 buckets,只是每个 bucket 的容量是固定的 16 个(取决于 SIMD 指令的宽度),而且不像拉链法那样可以串联,这样可以用 SIMD 一次性比对完 bucket 内的全部 keys,提高了性能,而且还能充分利用缓存的局部性。
至于说它省内存,我倾向于认为只是因为它的 load factor 略高一些所带来的些微优势,而没有本质区别,要注意不要被一些第三方的虚假宣传骗了。 #algorithm
👍14
https://laisky.notion.site/GPL-_-_-_-1222f285a5f04fc98af34b10614feb7e?pvs=4
很多人转这篇《最高人民法院:这份判决给软件开发者吃了定心丸》,稍微去看了下,感觉有点标题党。
原告基于 GPLv2 的开源项目二次开发了闭源商业软件,使用 socket/commandline 规避了 GPLv2 感染。被告窃取了原告的非开源商业代码,狡辩称这是 GPL 代码,可以使用。法院支持了原告的诉求,认定侵权事实成立。
侵权是发生于非开源商业代码,其实感觉和 GPLv2 没啥关系,又不是支持了开源代码的权利声明,而只是支持了软著的权利,没什么说服力,跟各位开源开发者也没什么关系。
很多人转这篇《最高人民法院:这份判决给软件开发者吃了定心丸》,稍微去看了下,感觉有点标题党。
原告基于 GPLv2 的开源项目二次开发了闭源商业软件,使用 socket/commandline 规避了 GPLv2 感染。被告窃取了原告的非开源商业代码,狡辩称这是 GPL 代码,可以使用。法院支持了原告的诉求,认定侵权事实成立。
侵权是发生于非开源商业代码,其实感觉和 GPLv2 没啥关系,又不是支持了开源代码的权利声明,而只是支持了软著的权利,没什么说服力,跟各位开源开发者也没什么关系。
👀3
https://telegra.ph/Attention-Mechanism-02-21
简要概括下 RNN、attention、transformer 的关系。
next: https://t.me/laiskynotes/184
简要概括下 RNN、attention、transformer 的关系。
next: https://t.me/laiskynotes/184
Telegraph
Attention Mechanism
published at: https://t.me/laiskynotes/161 时间线 1943 年提出人工神经网络; 2014 年发表深度学习(AlexNet); 2015 年 Bahdanau 提出 Attention 机制优化 RNN; 2015 年 OpenAI 成立; 2017 年 Google 发表 Transformer,提出不需要 RNN,只要 Attention 就够了; 2017 年 OpenAI 发布基于 transformer 的 gpt-1; 2019 年 gpt-2;2020…
👍5
Laisky's Notes
https://laisky.notion.site/How-Hype-Will-Turn-Your-Security-Key-Into-Junk-ac50dfbc44354bdfab17ef76e72ece13 非常不错的文章,介绍了目前 passkey 领域可能正在走的一条歧路。 补充:关于 yubikey 是什么,以前写过一篇文章 https://blog.laisky.com/p/yubikey/ 众所周知,FIDO、WebAuthn 等正在推动 passwordless,也就是放弃让用户记忆…
此前讨论过 passkey 的一个缺陷(https://t.me/laiskynotes/64 ),就是需要客户端存储太多数量的 resident keys,这对于如 Yubikey 这样的 security keys 设备非常不友好,因为消费级 security keys 往往只有 10~20 个 private key slots。
https://laisky.notion.site/HD-Wallets-Explained-From-High-Level-to-Nuts-and-Bolts-44d109ed89e04bb79f993234f185848e?pvs=4
最近学习了 Hierarchical Deterministic Keys 结构。HD Keys 本质上是一种面向非对称密钥的 KDF(key derivation function)。它可以从一个 root private key 为根节点,通过添加一些 key material 生成新的 child key。
KDF 是一个确定性(deterministic)的函数,也就是相同的输出,始终能得出一样的结果。这一概念对于熟悉 KMS 的人而言并不陌生,其实所有的 KMS 都是只存储 master key 的。HD Keys 的主要特点就是支持了非对称密钥。
那么我们是否可以把 HD 和 passkey 结合起来,让用户只需要存储一个(或多个,增强安全性)root key,然后服务端存储 key derivation materials,这样用户依然可以做到不同网站使用不同的 child key,而同时又不需要存储大量的 resident keys?
#crypto
https://laisky.notion.site/HD-Wallets-Explained-From-High-Level-to-Nuts-and-Bolts-44d109ed89e04bb79f993234f185848e?pvs=4
最近学习了 Hierarchical Deterministic Keys 结构。HD Keys 本质上是一种面向非对称密钥的 KDF(key derivation function)。它可以从一个 root private key 为根节点,通过添加一些 key material 生成新的 child key。
KDF 是一个确定性(deterministic)的函数,也就是相同的输出,始终能得出一样的结果。这一概念对于熟悉 KMS 的人而言并不陌生,其实所有的 KMS 都是只存储 master key 的。HD Keys 的主要特点就是支持了非对称密钥。
那么我们是否可以把 HD 和 passkey 结合起来,让用户只需要存储一个(或多个,增强安全性)root key,然后服务端存储 key derivation materials,这样用户依然可以做到不同网站使用不同的 child key,而同时又不需要存储大量的 resident keys?
#crypto
Telegram
Laisky's Notes
https://laisky.notion.site/How-Hype-Will-Turn-Your-Security-Key-Into-Junk-ac50dfbc44354bdfab17ef76e72ece13
非常不错的文章,介绍了目前 passkey 领域可能正在走的一条歧路。
补充:关于 yubikey 是什么,以前写过一篇文章 https://blog.laisky.com/p/yubikey/
众所周知,FIDO、WebAuthn 等正在推动 passwordless,也就是放弃让用户记忆…
非常不错的文章,介绍了目前 passkey 领域可能正在走的一条歧路。
补充:关于 yubikey 是什么,以前写过一篇文章 https://blog.laisky.com/p/yubikey/
众所周知,FIDO、WebAuthn 等正在推动 passwordless,也就是放弃让用户记忆…
❤2🤔1
https://laisky.notion.site/Anonymous-Credential-Part-2-Selective-Disclosure-and-CL-Signature-4e88462949764a579222d810c614842a
想象这么一个场景,政府给你签发了身份证,政府为这个证件背书上面的信息都是真实有效的。
然后你为了上某 X 网站,需要证明你已经年满 18 岁。于是你把身份证信息加密后上传给网站,然后选择只披露其中的姓名和年龄属性。网站通过签名验证这个身份信息确实是由政府颁发的,其中的信息真实可靠,而且证件上的年龄显示你已经年满 18 岁,而证件上的其他信息都对网站不可见。
在上述流程中,政府(issuer)为你(holder)签发了信息,你选择将部分信息披露给网站(verifier)。这就是 Anonymous Credential(Anoncred)或称为 Attribute-based Credential(ABC)。
这一算法的特点包括:
1. issuer 可以使用一对公私钥,签发 K 组信息。
2. holder 可以选择性地披露 N 组信息(N<=K)。
3. verifier 可以通过 issuer 的公钥验证 holder 所披露的信息的有效性。
穿插提一下密码学中的 Commitment Schema。Alice 可以对一个未披露的 Message 声明 Commitment,Bob 可以保留这一 Commitment,直到 Alice 披露 Message 后,Bob 可以验证这一 Message 是否与 Commitment 一致。结合前面所提的 ABC,其实就是一个 Commitment Schema,Issuer 为 Holder 的信息背书(statement signature),Verifier 需要 Holder 披露信息后才能验证真实性。
最简单的实现就是基于 RSA 的 CL Signature,更多细节可点击查看: https://telegra.ph/CL-Signature-02-26-2 #crypto
next:
- ECC & ECDSA & ECDH
- AC & ZKP
想象这么一个场景,政府给你签发了身份证,政府为这个证件背书上面的信息都是真实有效的。
然后你为了上某 X 网站,需要证明你已经年满 18 岁。于是你把身份证信息加密后上传给网站,然后选择只披露其中的姓名和年龄属性。网站通过签名验证这个身份信息确实是由政府颁发的,其中的信息真实可靠,而且证件上的年龄显示你已经年满 18 岁,而证件上的其他信息都对网站不可见。
在上述流程中,政府(issuer)为你(holder)签发了信息,你选择将部分信息披露给网站(verifier)。这就是 Anonymous Credential(Anoncred)或称为 Attribute-based Credential(ABC)。
这一算法的特点包括:
1. issuer 可以使用一对公私钥,签发 K 组信息。
2. holder 可以选择性地披露 N 组信息(N<=K)。
3. verifier 可以通过 issuer 的公钥验证 holder 所披露的信息的有效性。
穿插提一下密码学中的 Commitment Schema。Alice 可以对一个未披露的 Message 声明 Commitment,Bob 可以保留这一 Commitment,直到 Alice 披露 Message 后,Bob 可以验证这一 Message 是否与 Commitment 一致。结合前面所提的 ABC,其实就是一个 Commitment Schema,Issuer 为 Holder 的信息背书(statement signature),Verifier 需要 Holder 披露信息后才能验证真实性。
最简单的实现就是基于 RSA 的 CL Signature,更多细节可点击查看: https://telegra.ph/CL-Signature-02-26-2 #crypto
next:
- ECC & ECDSA & ECDH
- AC & ZKP
❤4👍2
https://youtu.be/r0Ji7KqqEqg?si=Dobd3qPl8BW8zZHm Hostomel 之战的详细解释。实际上俄军 VDV 强袭机场得手后,当天下午就被包围了。乌军的炮击破坏了机场设施,使得 18 架次的后续增援部队无法降落。
我觉得降落了估计也不会有特别大的影响,毕竟俄军主力很快就从北方推进到了此处,然而除了搞个 bucha 大屠杀外再也无所作为。
我觉得降落了估计也不会有特别大的影响,毕竟俄军主力很快就从北方推进到了此处,然而除了搞个 bucha 大屠杀外再也无所作为。
YouTube
Battle for Hostomel Airport - Animated Analysis
It is the early morning of February 24th, 2022. Just minutes after the president of Russia, Vladimir Putin declares his “Special Military Operation” or simply full-scale invasion in Ukraine, the Russian 3M-54 Caliber Cruise Missile is on the way toward its…
👍1
https://youtu.be/x_isZHaZjcU?si=fUVBFw_FvrkqJi63
通过访谈和讲述几位以色列人和巴勒斯坦人的真实故事,非常简明扼要的阐明了自 1948 年以色列建国以来的 60 年动荡历史。
先是在战争中从周围的阿拉伯国家里获取领土,通过大驱逐建立了一个犹太国家。然后是与周边国家的艰难和谈,经过以色列 Meir 夫人、埃及 Anwar El-Sadat 总统、巴勒斯坦武装领袖 Yasser Arafat、以色列总理 Yitzhak Rabin 等人的不懈努力,曾一度取得了和平的希望。
可惜激进派的火苗从不曾熄灭,Sadat、Rabin 被暗杀,加沙地区信奉原教旨主义的哈马斯崛起,Arafat 被边缘化。以色列的鹰派 Netanyahu 上台,奥斯陆协议(Oslo Accord)被抛弃。巴以之间陷入了漫长的袭击与报复的循环,迄今看不到任何和解的希望。
next: https://t.me/laiskynotes/204
通过访谈和讲述几位以色列人和巴勒斯坦人的真实故事,非常简明扼要的阐明了自 1948 年以色列建国以来的 60 年动荡历史。
先是在战争中从周围的阿拉伯国家里获取领土,通过大驱逐建立了一个犹太国家。然后是与周边国家的艰难和谈,经过以色列 Meir 夫人、埃及 Anwar El-Sadat 总统、巴勒斯坦武装领袖 Yasser Arafat、以色列总理 Yitzhak Rabin 等人的不懈努力,曾一度取得了和平的希望。
可惜激进派的火苗从不曾熄灭,Sadat、Rabin 被暗杀,加沙地区信奉原教旨主义的哈马斯崛起,Arafat 被边缘化。以色列的鹰派 Netanyahu 上台,奥斯陆协议(Oslo Accord)被抛弃。巴以之间陷入了漫长的袭击与报复的循环,迄今看不到任何和解的希望。
next: https://t.me/laiskynotes/204
👍7
Laisky's Notes
https://laisky.notion.site/Anonymous-Credential-Part-2-Selective-Disclosure-and-CL-Signature-4e88462949764a579222d810c614842a 想象这么一个场景,政府给你签发了身份证,政府为这个证件背书上面的信息都是真实有效的。 然后你为了上某 X 网站,需要证明你已经年满 18 岁。于是你把身份证信息加密后上传给网站,然后选择只披露其中的姓名和年龄属性。网站通过签名验证这个身份信息确实是由政府…
简单粗暴地理解椭圆曲线算法(Elliptic Curve Cryptography)。
首先,绘制一个扭曲的曲线。然后在这个曲线上定义一种名为加法的运算:
1. P 点和 Q 点相加: 绘制直线 PQ,得到和曲线的第三交点为 R,R 的 x 轴镜像点为结果。
2. P 点自己和自己相加: 绘制 P 点的切线,得到和曲线的交点 R,其镜像点为结果。
3. 定义零值为 y 轴的无穷远处,和零相加等于画一条垂直线。
如上我们定义了运算规则,接下来就是从曲线的点中选取一些点构成一个循环群。群就是一组满足相同规律的数的集合。循环群(cycle group)中存在一些本原元(primitive element),这些原元通过不断累加,可以遍历整个群。
形象地说,你找到一个本原元点(primitive element),然后不断地累加这个点,利用前文我们所介绍的加法运算,你其实就是在曲线上不断地跳跃,并最终会跳回起点。
ECC 加密算法中,就是构建这么一个曲线,它的循环群内的成员数量达到 2^100 次方,我们认为这个量级的数是无法靠暴力遍历破解的。这个曲线的每一个值是根据一个大素数的模的方程构建的,成员数量约等于这个素数的位数,一个 160-bits 的素数可以构建一个包含 2^160 个点的群。
然后给出这么一个公式
也就是说,我公开展示最终的 T 点,但是不告诉你我跳跃了多少次。你是难以通过暴力遍历去求解 d 的。这个
既然利用 ECC 构建了 DLP,那么就可以利用 ECC 替换传统 DLP 问题,比如 Diffie-Hellman 密钥交换算法,现在可以重构为基于 ECC 的 ECDH 算法。
Alice 和 Bob 都确认一个曲线和一个 primitive element P。然后双方各自生成一个 d,然后交换计算结果 dP。拿到对方的 dP 后再乘上自己的 d,就会得到一个相同的 T。窃听者能拿到曲线、P、d_alice*P 和 d_bob*P,但是他无法逆向求解 d_alice 和 d_bob,所以无法破解最终的 T。
PS: 所有的 DHKX 算法,都难以防御中间人攻击(MITM attack),即攻击者可以篡改通信,同时和双方握手。解决办法是引入数字证书,对对方的公钥进行签名。
PS: 安全的椭圆曲线是很难绘制的,一般参考 NIST 的推荐。 #crypto
next: https://t.me/laiskynotes/173
首先,绘制一个扭曲的曲线。然后在这个曲线上定义一种名为加法的运算:
1. P 点和 Q 点相加: 绘制直线 PQ,得到和曲线的第三交点为 R,R 的 x 轴镜像点为结果。
2. P 点自己和自己相加: 绘制 P 点的切线,得到和曲线的交点 R,其镜像点为结果。
3. 定义零值为 y 轴的无穷远处,和零相加等于画一条垂直线。
如上我们定义了运算规则,接下来就是从曲线的点中选取一些点构成一个循环群。群就是一组满足相同规律的数的集合。循环群(cycle group)中存在一些本原元(primitive element),这些原元通过不断累加,可以遍历整个群。
形象地说,你找到一个本原元点(primitive element),然后不断地累加这个点,利用前文我们所介绍的加法运算,你其实就是在曲线上不断地跳跃,并最终会跳回起点。
ECC 加密算法中,就是构建这么一个曲线,它的循环群内的成员数量达到 2^100 次方,我们认为这个量级的数是无法靠暴力遍历破解的。这个曲线的每一个值是根据一个大素数的模的方程构建的,成员数量约等于这个素数的位数,一个 160-bits 的素数可以构建一个包含 2^160 个点的群。
然后给出这么一个公式
dP = T。P 是一个 primitive element,它累加 d 次后会得到 T 点。P、T 是公钥,d 是私钥。这也是为什么 ECC 的私钥可以很短。也就是说,我公开展示最终的 T 点,但是不告诉你我跳跃了多少次。你是难以通过暴力遍历去求解 d 的。这个
dP = T 就是构建了一个离散对数问题(DLP),计算 dP 很简单,但是逆运算求算 d 很复杂,需要暴力搜索 2^100 的空间。既然利用 ECC 构建了 DLP,那么就可以利用 ECC 替换传统 DLP 问题,比如 Diffie-Hellman 密钥交换算法,现在可以重构为基于 ECC 的 ECDH 算法。
Alice 和 Bob 都确认一个曲线和一个 primitive element P。然后双方各自生成一个 d,然后交换计算结果 dP。拿到对方的 dP 后再乘上自己的 d,就会得到一个相同的 T。窃听者能拿到曲线、P、d_alice*P 和 d_bob*P,但是他无法逆向求解 d_alice 和 d_bob,所以无法破解最终的 T。
PS: 所有的 DHKX 算法,都难以防御中间人攻击(MITM attack),即攻击者可以篡改通信,同时和双方握手。解决办法是引入数字证书,对对方的公钥进行签名。
PS: 安全的椭圆曲线是很难绘制的,一般参考 NIST 的推荐。 #crypto
next: https://t.me/laiskynotes/173
👍9
https://youtu.be/Azm4yKKIlqE?si=fMmY_X1-4yR-yYwT
一部短小但是很深刻的纪录片,介绍欧美对俄罗斯原油价格实施价格制裁(Price Cap)后,实际上没有起到应有的作用,反而导致通胀和养肥了一大帮掮客。
简单介绍下背景,世界上有两个主要的原油交易市场:布伦特(Brent)和乌拉尔(Urals),俄罗斯的原油主要通过乌拉尔市场进行交易。俄罗斯入侵乌克兰后,欧美对乌拉尔原油实施了一系列的限制,包括禁售、限价等等。战前两个市场的原油价格非常接近,但是随着制裁,布伦特的价格上涨,乌拉尔的下跌,两个市场间出现了相当大的价差。
中国人最熟悉的,行政干预让市场扭曲,那就会存在权力寻租的空间。因为布伦特和乌拉尔的大幅价差,进口乌拉尔原油再倒卖去布伦特就成了一个暴利的生意,而其中的关键就是如何“洗油”,将乌拉尔原油的俄罗斯身份清洗干净,片中介绍了两种方式:
1. 将乌拉尔原油输送中国、印度进行加工提炼后,再以成品油的身份出口,这就不是俄罗斯的产品了。
2. 载满乌拉尔原油的油轮来到公海,秘密将原油输送给另一艘身份干净的油轮。
于是就有了图中的那一幕,俄罗斯购买了大量破烂不堪的油轮组成影子舰队(shadow fleet),负责将乌拉尔原油运送至希腊附近的海域,然后偷偷将原油转运至另一艘身份清白的油轮上,神不知鬼不觉地完成了“洗油”。再将这些原油运送至中国和印度精炼,最后将成品油以高价出口至欧美。有需求就会有供应,市场永不停转,一切都是利益分配的游戏。
这一现象反映出几个问题:
1. 欧美对全球市场的控制力远不如当初了,G7 的全球 GDP 占比只有 30% 出头,和 BRICS 几乎平起平坐
2. 行政对市场的扭曲几乎总是失效的,最终无非是利益的转移。这次原油制裁就是把消费者的利益转移给了掮客,而掮客们的背后,是谁?
Ps. 片里的希腊风光真漂亮
一部短小但是很深刻的纪录片,介绍欧美对俄罗斯原油价格实施价格制裁(Price Cap)后,实际上没有起到应有的作用,反而导致通胀和养肥了一大帮掮客。
简单介绍下背景,世界上有两个主要的原油交易市场:布伦特(Brent)和乌拉尔(Urals),俄罗斯的原油主要通过乌拉尔市场进行交易。俄罗斯入侵乌克兰后,欧美对乌拉尔原油实施了一系列的限制,包括禁售、限价等等。战前两个市场的原油价格非常接近,但是随着制裁,布伦特的价格上涨,乌拉尔的下跌,两个市场间出现了相当大的价差。
中国人最熟悉的,行政干预让市场扭曲,那就会存在权力寻租的空间。因为布伦特和乌拉尔的大幅价差,进口乌拉尔原油再倒卖去布伦特就成了一个暴利的生意,而其中的关键就是如何“洗油”,将乌拉尔原油的俄罗斯身份清洗干净,片中介绍了两种方式:
1. 将乌拉尔原油输送中国、印度进行加工提炼后,再以成品油的身份出口,这就不是俄罗斯的产品了。
2. 载满乌拉尔原油的油轮来到公海,秘密将原油输送给另一艘身份干净的油轮。
于是就有了图中的那一幕,俄罗斯购买了大量破烂不堪的油轮组成影子舰队(shadow fleet),负责将乌拉尔原油运送至希腊附近的海域,然后偷偷将原油转运至另一艘身份清白的油轮上,神不知鬼不觉地完成了“洗油”。再将这些原油运送至中国和印度精炼,最后将成品油以高价出口至欧美。有需求就会有供应,市场永不停转,一切都是利益分配的游戏。
这一现象反映出几个问题:
1. 欧美对全球市场的控制力远不如当初了,G7 的全球 GDP 占比只有 30% 出头,和 BRICS 几乎平起平坐
2. 行政对市场的扭曲几乎总是失效的,最终无非是利益的转移。这次原油制裁就是把消费者的利益转移给了掮客,而掮客们的背后,是谁?
Ps. 片里的希腊风光真漂亮
👍9