Надеюсь все вчера отдохнули читая про насекомых. Признаю, мне намного приятнее писать о жуках, пусть и вредных, чем об угрозе ядерного удара, или радиоактивной пыли.
Но сегодня возник интересный инфоповод. Связан он с заявлением Евгения Крамаренко, с которым мне приходилось пересекаться в некоторых "радиационных интервью". Суть заявления (см. в Washington Post) в том, что с Чернобыльской АЭС исчезла масса оборудования: автомобили, компьютеры, средства пожаротушения и дозиметры. На некоторых приборах были GPS трекеры, которые продолжают передавать данные о местоположении. И эти данные говорят о том, что "...часть украденного находится на территории Беларуси, вдоль границы. А часть перемещается по территории Беларуси — Гомель, Минск, другие места"
Раз это все перемещается, то логично попробовать поискать на беларуских онлайн-барахолках. Я не специалист в поиске украденных компьютеров, автомобилей и противопожарного оборудования, но могу попробовать посмотреть на предмет дозиметров(как коллекционер). Их, по словах Крамаренко, унесли аж 100500 1500 штук. С одной стороны, на основании ранних своих разборов (например этого) я могу предположить, что на ЧАЭС использовались (и используются) в основном сцинтилляторные поисковые приборы и другое серьезное оборудование, дико выглядящее в роли бытового дозиметра. И, возможно, сотрудники для постоянного ношения использовали дешевые и надежные дозиметры cоветского производства.
Если вы помните, в декабре 2021 я писал про дозиметрическое старье беларуских барахолок (ссылка). Посмотрел я на барахолки спустя полгода. Навскидку ничего особенно не изменилось ("распределение нормальное"), все те же СБМ-20, армейские ДП-5, МКС-01, иногда проскочит АтомФаст, cтало больше одинаковых АНРИ-01. Есть и достаточно интересные лоты.
Лот 1. Дозиметр Minicont H1370w в Бобруйске. Огромная ионизационная камера, которая для работы заполняется бутаном, прибор считает в cps (импульсы в секунду). Но объявление появилось в августе 2021 года.
Лот 2. Дозиметр MIRA 661 в Барановичах. Cчетчик Гейгера-Мюллера, но поставлялся в страны пострадавшие от аварии на ЧАЭС как гуманитарная помощь. О чем говорит и надпись "передано комиссией европейского сообщества". Объявление появилось в апреле 2022 года.
Лот 3. Польских радиометр Polon RKP-1-2 в Гомеле. Три счетчика Гейгера-Мюллера, считает в микрогейгерах/час и импульсах в минуту (cpm). Объявление появилось в апреле 2022 года.
Подытоживая. Сегодня сказать, что на беларуский вторичный рынок дозиметров хлынул поток приборов - нельзя. Кое-какие предположения можно делать, но это всего лишь досужие предположения и ни к чему не обязывающая информация для размышления. А беларуские барахолки пока поставлены на профилактический учет у LAB-66 :)
p.s. Шановний Євген Григорович, если прочитаете заметку - передайте мне под личную ответственность (через соцсети, или на "лабораторную почту") список марок/серийных номеров исчезнувших дозиметров. Чтобы не приходилось ловить рыбу в мутной воде.
p.p.s А "галоўнага радыяцыйнага асiстэнта" - шчыра вiншую з Днем Нараджэння! 🌼табе!
Но сегодня возник интересный инфоповод. Связан он с заявлением Евгения Крамаренко, с которым мне приходилось пересекаться в некоторых "радиационных интервью". Суть заявления (см. в Washington Post) в том, что с Чернобыльской АЭС исчезла масса оборудования: автомобили, компьютеры, средства пожаротушения и дозиметры. На некоторых приборах были GPS трекеры, которые продолжают передавать данные о местоположении. И эти данные говорят о том, что "...часть украденного находится на территории Беларуси, вдоль границы. А часть перемещается по территории Беларуси — Гомель, Минск, другие места"
Раз это все перемещается, то логично попробовать поискать на беларуских онлайн-барахолках. Я не специалист в поиске украденных компьютеров, автомобилей и противопожарного оборудования, но могу попробовать посмотреть на предмет дозиметров
Если вы помните, в декабре 2021 я писал про дозиметрическое старье беларуских барахолок (ссылка). Посмотрел я на барахолки спустя полгода. Навскидку ничего особенно не изменилось ("распределение нормальное"), все те же СБМ-20, армейские ДП-5, МКС-01, иногда проскочит АтомФаст, cтало больше одинаковых АНРИ-01. Есть и достаточно интересные лоты.
Лот 1. Дозиметр Minicont H1370w в Бобруйске. Огромная ионизационная камера, которая для работы заполняется бутаном, прибор считает в cps (импульсы в секунду). Но объявление появилось в августе 2021 года.
Лот 2. Дозиметр MIRA 661 в Барановичах. Cчетчик Гейгера-Мюллера, но поставлялся в страны пострадавшие от аварии на ЧАЭС как гуманитарная помощь. О чем говорит и надпись "передано комиссией европейского сообщества". Объявление появилось в апреле 2022 года.
Лот 3. Польских радиометр Polon RKP-1-2 в Гомеле. Три счетчика Гейгера-Мюллера, считает в микрогейгерах/час и импульсах в минуту (cpm). Объявление появилось в апреле 2022 года.
Подытоживая. Сегодня сказать, что на беларуский вторичный рынок дозиметров хлынул поток приборов - нельзя. Кое-какие предположения можно делать, но это всего лишь досужие предположения и ни к чему не обязывающая информация для размышления. А беларуские барахолки пока поставлены на профилактический учет у LAB-66 :)
p.s. Шановний Євген Григорович, если прочитаете заметку - передайте мне под личную ответственность (через соцсети, или на "лабораторную почту") список марок/серийных номеров исчезнувших дозиметров. Чтобы не приходилось ловить рыбу в мутной воде.
p.p.s А "галоўнага радыяцыйнага асiстэнта" - шчыра вiншую з Днем Нараджэння! 🌼табе!
Лето. Беларусь. Гнус
Как не пытайся, но от городской и карантинной энтомологии не так просто отделаться. Потому что жизнь сама дает инфоповоды, которые на всадников Апокалипсиса (как любят говорить некоторые читатели) не слишком похожи, но зато вполне входят в список "десяти казней египетских". На сей раз в Беларусь пришла позиция №3 из этого списка.
Позиция для нашего региона ранее совершенно не характерная, традиционно таёжная. Гнус! Под этим словом объединяется сбившаяся в стаи совокупность различных кровососущих двукрылых насекомых (мошки, слепни, мокрецы и проч). Про гнус заговорили в Гомеле, Могилеве, в Гродненской области, где полчища насекомых забивают радиаторы автомобилей.
Сани готовят летом, а телегу зимой, вот гнус и защиту от него в LAB-66 мы обсуждали в январе 2020 года (ссылка). Тогда я писал, что лучшая защита от полчищ мошек - это т.н. сетка Павловского. Т.е. любая достаточно крупная и жесткая сетка из натурального волокна (ячейки 1-1,5 см²), пропитанная на протяжении 3-4 часов смесью репеллентов. Авторские составы изобретателя сетки, Е.Н. Павловского: 1) 15 частей аптечного лизола, 8 частей соснового скипидара
- 77 частей воды, или же 2)10 частей березового дегтя, 5 частей натриевой щелочи, 85 частей воды. Твердый состав для натирания сетки: 1)69% диметилфталата, 20% стеариновой кислоты, 7,7% этилцеллюлозы, 3,3% пчелиного воска. Гель для намазывания сетки: 1 часть по весу ацетилцеллюлозы, 10 частей ацетона, 4 части диметилфталата. Диметилфталат (продается во многих аптеках, как противогрибковое средство) во всех рецептах можно заменять на диэтилтолуамид (ДЭТА). Кстати, вместо дегтя можно попробовать пропитать материал сетки самой простой и не технологичной "мазью для пропитки лыж".
На крайний случай, если нет желания или компонентов для приготовления собственных пропиток, можно замочить подходящую сетку в полиэтиленовой емкости/герметичном пакете с использованием коммерческих репеллентных средств. Только выбирайте правильный препарат, чаще всегобирюльки репелленты (без указания состава и концентраций) продающиеся на выходе из метро, или в гипермаркетах - абсолютно бесполезны. Для наших задач подойдет ДЭТА с концентрацией от 20 до 50%, пикаридин с концентрацией более 30%, этилбутилацетиламинопропионат (IR3535) c концентрациями от 15 до 30%. Противникам синтетической химии можно попробовать для пропитки эфирные масла кипариса нутканского и руты обыкновенной.
Примечание: диметилфталат гораздо дешевле диэтилтолуамида. Но применять его стоит только в качестве пропиток для защитных сеток, ни в коем случае не наносить на кожу. Почему - можно прочитать в заметке про ПВХ (ссылка)
P.S. Очевидцы уточняют, что на фото не настоящий гнус :) Ок, пусть тогда фото носит иллюстративный характер (иллюстрация "полчищ мошки́")
Как не пытайся, но от городской и карантинной энтомологии не так просто отделаться. Потому что жизнь сама дает инфоповоды, которые на всадников Апокалипсиса (как любят говорить некоторые читатели) не слишком похожи, но зато вполне входят в список "десяти казней египетских". На сей раз в Беларусь пришла позиция №3 из этого списка.
Позиция для нашего региона ранее совершенно не характерная, традиционно таёжная. Гнус! Под этим словом объединяется сбившаяся в стаи совокупность различных кровососущих двукрылых насекомых (мошки, слепни, мокрецы и проч). Про гнус заговорили в Гомеле, Могилеве, в Гродненской области, где полчища насекомых забивают радиаторы автомобилей.
Сани готовят летом, а телегу зимой, вот гнус и защиту от него в LAB-66 мы обсуждали в январе 2020 года (ссылка). Тогда я писал, что лучшая защита от полчищ мошек - это т.н. сетка Павловского. Т.е. любая достаточно крупная и жесткая сетка из натурального волокна (ячейки 1-1,5 см²), пропитанная на протяжении 3-4 часов смесью репеллентов. Авторские составы изобретателя сетки, Е.Н. Павловского: 1) 15 частей аптечного лизола, 8 частей соснового скипидара
- 77 частей воды, или же 2)10 частей березового дегтя, 5 частей натриевой щелочи, 85 частей воды. Твердый состав для натирания сетки: 1)69% диметилфталата, 20% стеариновой кислоты, 7,7% этилцеллюлозы, 3,3% пчелиного воска. Гель для намазывания сетки: 1 часть по весу ацетилцеллюлозы, 10 частей ацетона, 4 части диметилфталата. Диметилфталат (продается во многих аптеках, как противогрибковое средство) во всех рецептах можно заменять на диэтилтолуамид (ДЭТА). Кстати, вместо дегтя можно попробовать пропитать материал сетки самой простой и не технологичной "мазью для пропитки лыж".
На крайний случай, если нет желания или компонентов для приготовления собственных пропиток, можно замочить подходящую сетку в полиэтиленовой емкости/герметичном пакете с использованием коммерческих репеллентных средств. Только выбирайте правильный препарат, чаще всего
Примечание: диметилфталат гораздо дешевле диэтилтолуамида. Но применять его стоит только в качестве пропиток для защитных сеток, ни в коем случае не наносить на кожу. Почему - можно прочитать в заметке про ПВХ (ссылка)
P.S. Очевидцы уточняют, что на фото не настоящий гнус :) Ок, пусть тогда фото носит иллюстративный характер (иллюстрация "полчищ мошки́")
Про "веселое лето" которое ждет беларусов...
Заметка по просьбам научно-технической диаспоры из "города карьерных самосвалов".
После публикации заметки про гнус сразу несколько читателей высказали претензии по поводу отсутствия конкретики. Какой препарат купить, где его купить, за сколько. Я постарался учесть эти замечания и сделал небольшой обзор репеллентов (клещ&комар&мошка), на примере ассортимента крупнейших интернет-магазинов Беларуси. Увы, но с химической точки зрения ситуация плачевная - из примерно четырех десятков репеллентов, присутствующих в продаже, подходят для целей защиты от силы пять-семь позиций. Все остальное "работает" с надеждой на плацебо-эффект.
Отдельная часть заметки посвящена теме "дети VS репелленты" :)
Подробнее читаем по ссылке на Medium: 👇
📜 Большой июньский разбор репеллентов
P.S. Cобственные репелленты в Беларуси представлены фрагментарно, поэтому информация легко масштабируется на соседние страны.
Заметка по просьбам научно-технической диаспоры из "города карьерных самосвалов".
После публикации заметки про гнус сразу несколько читателей высказали претензии по поводу отсутствия конкретики. Какой препарат купить, где его купить, за сколько. Я постарался учесть эти замечания и сделал небольшой обзор репеллентов (клещ&комар&мошка), на примере ассортимента крупнейших интернет-магазинов Беларуси. Увы, но с химической точки зрения ситуация плачевная - из примерно четырех десятков репеллентов, присутствующих в продаже, подходят для целей защиты от силы пять-семь позиций. Все остальное "работает" с надеждой на плацебо-эффект.
Отдельная часть заметки посвящена теме "дети VS репелленты" :)
Подробнее читаем по ссылке на Medium: 👇
📜 Большой июньский разбор репеллентов
P.S. Cобственные репелленты в Беларуси представлены фрагментарно, поэтому информация легко масштабируется на соседние страны.
Проверенный репеллент - лучшая "путевка в лето".
Небольшая памятка по действенным репеллентам (должны одинаково хорошо работать против клещей/комаров/гнуса). Акцент только на действующем веществе и его концентрации, никаких слабосильных средств, лже-репеллентов и вещей с неоднозначной репутацией. Репелленты из памятки доступны на территориях Украины, Беларуси, РФ, Польши и Литвы. Описания некоторых из препаратов и другую полезную информацию по этой теме можно найти в статье. А сами средства ищите в магазинах in situ :)
⚠ Обязательно сверяйте цифры действующего вещества с составов нанесенным на баллоне средства. Производитель часто пишет на сайте одно значение, на баллоне совершенно другое. Я не смогу все это отследить, а вы потратите деньги за "порцию ложной надежды".
P.S. Картинка в большом разрешении, поэтому может загружаться не так быстро, как хотелось бы. Особенно при использовании мобильного интернета. Картинка без сжатия Телеграм → здесь. Эта версися актуализируется постоянно с уточнением составов.
Небольшая памятка по действенным репеллентам (должны одинаково хорошо работать против клещей/комаров/гнуса). Акцент только на действующем веществе и его концентрации, никаких слабосильных средств, лже-репеллентов и вещей с неоднозначной репутацией. Репелленты из памятки доступны на территориях Украины, Беларуси, РФ, Польши и Литвы. Описания некоторых из препаратов и другую полезную информацию по этой теме можно найти в статье. А сами средства ищите в магазинах in situ :)
⚠ Обязательно сверяйте цифры действующего вещества с составов нанесенным на баллоне средства. Производитель часто пишет на сайте одно значение, на баллоне совершенно другое. Я не смогу все это отследить, а вы потратите деньги за "порцию ложной надежды".
P.S. Картинка в большом разрешении, поэтому может загружаться не так быстро, как хотелось бы. Особенно при использовании мобильного интернета. Картинка без сжатия Телеграм → здесь. Эта версися актуализируется постоянно с уточнением составов.
Б - Бдительность или Не все экстремальные пикники одинаково полезны
На памятку по репеллентам уже пришла первая рекламация (спасибо читателю Дмитрию М. за замечание&фотографии). Оказалось что не все средства марки PICNIC Extreme (далее РЕ) эквивалентны между собой. Вариант "от клещей усиленный" кардинально отличается по составу от варианта "от всех летающих и клещей". Дожили мы, друзья, наконец до того времени, когда название абсолютно ничего не значит.
PE "от клещей" усилен 😀 0,2% альфациперметрина и 5% ДЭТА. Странно что на этикетке "усиленный", а не "для детей"/"бархатная кожа"/"экологичный" или т.п. За 6.7 беларуских рублей (это 2.6$) - абсолютно бесполезная штука. И комара не отпугнет, и для пропитки штанов от клеща не годится. Всех остальных средств "облагороженных" контактными пиретроидами вместо нормальной концентрации отпугивающего ДЭТА это тоже касается.Экономист/маркетолог делает состав вместо химика, вот как это называется.
PE "от всех летающих", как я и писал изначально в реппелент-разборе (ссылка), содержит 35% ДЭТА и 0,75% синергиста MGK-264, что делает его достаточно интересным образцом защитного средства, по праву попавшему в мой список.
Так что будьте предельно внимательны и всегда читайте состав, смотрите и сравнивайте цифры. Состава и цифр нет → про такое средство забыть. При покупке в интернет-магазине имеет смысл позвонить и попросить зачитать состав (потому что картинки часто перепутаны). Я же, в свою очередь, в знак "благодарности" производителю за такие маркетинговые ходы, актуализировал памятку и пометил PE "черной меткой".
⛔🦟🪰🪲⛔ Актуальный список репеллентов
На памятку по репеллентам уже пришла первая рекламация (спасибо читателю Дмитрию М. за замечание&фотографии). Оказалось что не все средства марки PICNIC Extreme (далее РЕ) эквивалентны между собой. Вариант "от клещей усиленный" кардинально отличается по составу от варианта "от всех летающих и клещей". Дожили мы, друзья, наконец до того времени, когда название абсолютно ничего не значит.
PE "от клещей" усилен 😀 0,2% альфациперметрина и 5% ДЭТА. Странно что на этикетке "усиленный", а не "для детей"/"бархатная кожа"/"экологичный" или т.п. За 6.7 беларуских рублей (это 2.6$) - абсолютно бесполезная штука. И комара не отпугнет, и для пропитки штанов от клеща не годится. Всех остальных средств "облагороженных" контактными пиретроидами вместо нормальной концентрации отпугивающего ДЭТА это тоже касается.
PE "от всех летающих", как я и писал изначально в реппелент-разборе (ссылка), содержит 35% ДЭТА и 0,75% синергиста MGK-264, что делает его достаточно интересным образцом защитного средства, по праву попавшему в мой список.
Так что будьте предельно внимательны и всегда читайте состав, смотрите и сравнивайте цифры. Состава и цифр нет → про такое средство забыть. При покупке в интернет-магазине имеет смысл позвонить и попросить зачитать состав (потому что картинки часто перепутаны). Я же, в свою очередь, в знак "благодарности" производителю за такие маркетинговые ходы, актуализировал памятку и пометил PE "черной меткой".
⛔🦟🪰🪲⛔ Актуальный список репеллентов
Поздравляю радиофоб-комьюнити с важной победой!
Я помню насколько ожесточенными и эмоциональными были споры в чате канала по поводу датчиков вокруг ЧАЭС и невозможности передачи данных от них в МАГАТЭ. Так вот, этот тревожный этап наконец-то завершен, и я искренне надеюсь что он больше никогда не повторится.
Вчера в 22.09 гендиректор МАГАТЭ Р. Гроси объявил, что данные от систем мониторинга вокруг ЧАЭС (39 датчиков в 30 км зоне) поступают в общую систему мониторинга МАГАТЭ и цифры отображаются на общей (IRMIS) карте. Теперь официально (а LAB-66 верит только МАГАТЭ) можно говорить, что все радиационные показатели на уровне, который был до начала конфликта.
🔸 Официальный пресс-релиз (№80) от МАГАТЭ → здесь
Я помню насколько ожесточенными и эмоциональными были споры в чате канала по поводу датчиков вокруг ЧАЭС и невозможности передачи данных от них в МАГАТЭ. Так вот, этот тревожный этап наконец-то завершен, и я искренне надеюсь что он больше никогда не повторится.
Вчера в 22.09 гендиректор МАГАТЭ Р. Гроси объявил, что данные от систем мониторинга вокруг ЧАЭС (39 датчиков в 30 км зоне) поступают в общую систему мониторинга МАГАТЭ и цифры отображаются на общей (IRMIS) карте. Теперь официально (а LAB-66 верит только МАГАТЭ) можно говорить, что все радиационные показатели на уровне, который был до начала конфликта.
🔸 Официальный пресс-релиз (№80) от МАГАТЭ → здесь
This media is not supported in your browser
VIEW IN TELEGRAM
Технотекст-2021. Принимаю поздравления! 🚀
Пару дней назад редакция Хабра подвела итоги юбилейного (пятого) конкурса "Технотекст-2021". Технотекст - это красивый внутренний конкурс технических статей, соревнование лучших из лучших авторов с серьезнейшим предварительным отбором и невероятно жесткой конкуренцией. Попасть в призеры Технотекста(и получить ту самую клавиатуру, выгравированную на пластине нержавейки) - это то, о чем мечтает каждый техноавтор, максимальное признание важности твоей работы для сообщества. Почти что аналог Пулитцеровской премии, но с поправкой на специализацию ресурса :)
В этом году мне удалось!!! 🎉 Статья про цикуту и ее сверхфитотоксины (ссылка) стала лучшей в номинации "Здоровье" 🎉! Спасибо за доверие, любимый технологический ресурс ❤️
От автора: несмотря на то, что девизом Технотекста-2021 стала цитата С. Лема "ничто не стареет так быстро как будущее" - химии это не сильно касается. Опасность цикуты и болиголова в 2022 году не меньше чем в 2021, не уменьшится она и в 2023.
Пару дней назад редакция Хабра подвела итоги юбилейного (пятого) конкурса "Технотекст-2021". Технотекст - это красивый внутренний конкурс технических статей, соревнование лучших из лучших авторов с серьезнейшим предварительным отбором и невероятно жесткой конкуренцией. Попасть в призеры Технотекста
В этом году мне удалось!!! 🎉 Статья про цикуту и ее сверхфитотоксины (ссылка) стала лучшей в номинации "Здоровье" 🎉! Спасибо за доверие, любимый технологический ресурс ❤️
От автора: несмотря на то, что девизом Технотекста-2021 стала цитата С. Лема "ничто не стареет так быстро как будущее" - химии это не сильно касается. Опасность цикуты и болиголова в 2022 году не меньше чем в 2021, не уменьшится она и в 2023.
На этой неделе я публиковал заметки с утра. Теперь решил узнать прямое мнение сообщества
В какое время (GMT+3), на ваш взгляд, приятнее читать очередную (обычную, НЕ экстренную) заметку от LAB-66? Теперь точно можно выбирать несколько вариантов ответа
В какое время (GMT+3), на ваш взгляд, приятнее читать очередную (обычную, НЕ экстренную) заметку от LAB-66? Теперь точно можно выбирать несколько вариантов ответа
Anonymous Poll
4%
Очень раннее утро 4:00-6:00
10%
Раннее утро - 7:00-9:00
13%
Утро 9:00-11:00
9%
Обеденное время 12:00-14:00
6%
Послеобеденное время 15:00-17:00
19%
Ранний вечер 18:00-21:00
16%
Поздний вечер 21:00-23:00
4%
Ночь 24:00-3:00
51%
Подойдет любое время
0%
Другой вариант (напишу в комментарии)
ПОЛИАМИД-6 или Мутная история с бензокосой
Однажды мой брат, инженер по биосистемам, затронул достаточно неординарную тему влияния микропластика (микро- ли?) от бензотриммерной лески на почву и ее обитателей. К моему удивлению, как в сети Интернет, так и в научной/патентной периодике отсутствуют какие-либо публикации на эту тему. Может быть проблемы не существует, и все это нагнетание, пусть косят себе и дальше эти миллионы "газонокосителей"? Давайте попробуем посчитать.
Сейчас очень широко (Китай старается производить дешево и много) используются бытовые триммеры и бензокосы. Чаще всего они имеют мощность порядка киловатта и выше. Расходным материалом для таких устройств служит полимерная леска (корд) толщиной 2,4-3,3 мм. Я как-то взвешивал эти "филаменты" от различных производителей, получалось следующее:
сечение ⬛, толщина 2,4 мм - вес 1 метра~5 г
сечение▲, толщина 2,4 мм - вес 1 метра~4 г
сечение ★, толщина 2,4 мм - вес 1 метра~4,1 г
сечение ⬛, толщина 3 мм - вес 1 метра~10 г
Для обработки участка 10 соток средней степени зарастания необходимо порядка 2-3 метров., т.е. до 30 грамм, в зависимости от толщины лески. Предположим обкашивается участок три раза в месяц (~90 грамм полимера), т.е. за лето ~270 грамм мелкодисперсного полимер в траве должно осесть(кстати по этой причине бензокосы не используются для заготовки сена). Если взять какую-то условную улицу с частной застройкой (порядка сотни домов) и предположить, что в выходные треть жителей что-то косит, то получается в день уже 900 грамм пластика, за месяц (c озвученными ранее допущениями) ~2,7 кг, за лето - 8,1 кг пластика, распределенного в почве на на площади в 300 соток (3 га). При использовании китайской лески-ширпотреба цифры расхода можете умножать х2-х5.
В 99% случаев для производства лески идет нейлон, он же полиамид. Что с этим происходит дальше? А в общем-то ничего особенного, в лучшем случае фото-, термо- и биодеградация. В результате этих процессов фрагменты полимера становятся все меньше (дробятся). Кстати опять же, в публичных базах данных нет ни одной статьи и исследования с оценкой размера фрагментов, которые образуются при работе триммера. Так что пусть будет "фрагменты нейлона размером N". В процессе деструкции расстояния между волокнами полимера увеличиваются, морфология поверхности становится хаотичной. Такой субстрат с радостью колонизируют микроорганизмы (бактерии и гифы грибов).
Под действием веществ, выделяемых микроорганизмами происходит процесс энзимной деполимеризации, пластик разрушается до мономеров (в случае нейлона это различные амиды), а дальше уже эти мономеры, в зависимости от своей химической природы кто в воздух, кто в воду/почвуа кто и на стол к газонокосителю.
Сказать как быстро будет происходить разрушение микрочастиц сложно, потому что это зависит от спектра почвенных микроорганизмов конкретной местности, от погоды и количества солнечных дней, от химического состава почвы и воды. Но одно можно сказать точно, постепенно яркие кусочки все чаще и чаще будут встречаться среди травы. В случае УФ-деградации полиамид гоооораздо устойчивее полиэтилена (~2 раза), и тем более полипропилена (~в 5 раз).
Что ж делать?Как остановить газонокосильщика в себе? Можно делать вид, что ничего не происходит. Камень, болт, кусок нейлона в почве на участке. Какая разница, лишь бы в Инстаграм через забор соседу красиво выглядело, а "после нас - хоть потоп". Можно купить триммерную леску от известной компании Oregon (бренд BioTrim). Там вроде тот же нейлон, но OXY-фицированный. Такой пластик содержит добавки катализаторов (соли металлов etc), которые в окружающей среде увеличивают скорость окисления полимера (5-10 лет вместо сотни). Ну и наконец можно просто использовать стальные режущие диски, или вообще роторные газонокосилки (косу-литовку, м?). В общем выбор есть, главное подобрать вариант под свой менталитет.
p.s. %username% если на выходных "как раз собирался покосить триммером на даче" - ставь эмоцию 🤔
#микропластик, #microplastics
Однажды мой брат, инженер по биосистемам, затронул достаточно неординарную тему влияния микропластика (микро- ли?) от бензотриммерной лески на почву и ее обитателей. К моему удивлению, как в сети Интернет, так и в научной/патентной периодике отсутствуют какие-либо публикации на эту тему. Может быть проблемы не существует, и все это нагнетание, пусть косят себе и дальше эти миллионы "газонокосителей"? Давайте попробуем посчитать.
Сейчас очень широко (Китай старается производить дешево и много) используются бытовые триммеры и бензокосы. Чаще всего они имеют мощность порядка киловатта и выше. Расходным материалом для таких устройств служит полимерная леска (корд) толщиной 2,4-3,3 мм. Я как-то взвешивал эти "филаменты" от различных производителей, получалось следующее:
сечение ⬛, толщина 2,4 мм - вес 1 метра~5 г
сечение▲, толщина 2,4 мм - вес 1 метра~4 г
сечение ★, толщина 2,4 мм - вес 1 метра~4,1 г
сечение ⬛, толщина 3 мм - вес 1 метра~10 г
Для обработки участка 10 соток средней степени зарастания необходимо порядка 2-3 метров., т.е. до 30 грамм, в зависимости от толщины лески. Предположим обкашивается участок три раза в месяц (~90 грамм полимера), т.е. за лето ~270 грамм мелкодисперсного полимер в траве должно осесть
В 99% случаев для производства лески идет нейлон, он же полиамид. Что с этим происходит дальше? А в общем-то ничего особенного, в лучшем случае фото-, термо- и биодеградация. В результате этих процессов фрагменты полимера становятся все меньше (дробятся). Кстати опять же, в публичных базах данных нет ни одной статьи и исследования с оценкой размера фрагментов, которые образуются при работе триммера. Так что пусть будет "фрагменты нейлона размером N". В процессе деструкции расстояния между волокнами полимера увеличиваются, морфология поверхности становится хаотичной. Такой субстрат с радостью колонизируют микроорганизмы (бактерии и гифы грибов).
Под действием веществ, выделяемых микроорганизмами происходит процесс энзимной деполимеризации, пластик разрушается до мономеров (в случае нейлона это различные амиды), а дальше уже эти мономеры, в зависимости от своей химической природы кто в воздух, кто в воду/почву
Сказать как быстро будет происходить разрушение микрочастиц сложно, потому что это зависит от спектра почвенных микроорганизмов конкретной местности, от погоды и количества солнечных дней, от химического состава почвы и воды. Но одно можно сказать точно, постепенно яркие кусочки все чаще и чаще будут встречаться среди травы. В случае УФ-деградации полиамид гоооораздо устойчивее полиэтилена (~2 раза), и тем более полипропилена (~в 5 раз).
Что ж делать?
p.s. %username% если на выходных "как раз собирался покосить триммером на даче" - ставь эмоцию 🤔
#микропластик, #microplastics
Хорошая новость. В снегах Антарктиды бензотриммеры возможно тоже кто-то использует
Полимеры входят в подмножество коллоидной химии, поэтому периодически попадают в область моих научных интересов. Раз уж я начал сегодня с нейлонового микропластика, то этим и продолжу. В качества инфоповода - интересный факт, упомянутый в чате канала. Речь про недавнюю статью из журнала Cryosphere
В ней ученые из Кентерберийского университета (Новая Зеландия) собрали образцы снега на шельфовом леднике Росса в Антарктиде в конце 2019 года. Затем образцы анализировались с помощью оптической микроскопии (стереомикроскоп Leica MZ125) и микро-ИК-спектроскопии с Фурье преобразованиями (µFTIR@Hyperion 2000). Оказалось что микропластик присутствует ВЕЗДЕ (во всех образцах). Преобладающая морфология - микроволокна. Содержание частиц было примерно одинаковым, порядка 30 частиц на литр талой воды. Больше всего было "бутылочного" PET (41%), затем комбинации из двух и более полимеров (17%), по 9% - метилметакрилат и ПВХ, 6% - нейлон и сумма полипропилена/тефлона/силикона/поливинилидена, по 4% - полиэтилен, алкиды и нитрат целлюлозы. Размеры частиц варьировались от 50 до 3510 мкм (средний размер ~606 мкм). Большая часть частиц (81%) была размером < 1000 мкм, 28% — в диапазоне 0–200 мкм.
Так что, активнее используйте бензотриммеры, покупайте самую дешевую леску. Вносите свою лепту вантарктический "ленд-лиз" поставки нейлона пингвинам ;)
P.S. микропластик опасен не из-за своей химической природы (например PTFE/PA/PE/PP весьма и весьма химически инертны). Опасность носит морфологический характер - при переходе к наночастицам (нановолокнам) вещества проявляют совершенно не характерные для них свойства. Механизмы такого действия я немного освещал на примере асбеста (ссылка)
#микропластик, #microplastics
Полимеры входят в подмножество коллоидной химии, поэтому периодически попадают в область моих научных интересов. Раз уж я начал сегодня с нейлонового микропластика, то этим и продолжу. В качества инфоповода - интересный факт, упомянутый в чате канала. Речь про недавнюю статью из журнала Cryosphere
В ней ученые из Кентерберийского университета (Новая Зеландия) собрали образцы снега на шельфовом леднике Росса в Антарктиде в конце 2019 года. Затем образцы анализировались с помощью оптической микроскопии (стереомикроскоп Leica MZ125) и микро-ИК-спектроскопии с Фурье преобразованиями (µFTIR@Hyperion 2000). Оказалось что микропластик присутствует ВЕЗДЕ (во всех образцах). Преобладающая морфология - микроволокна. Содержание частиц было примерно одинаковым, порядка 30 частиц на литр талой воды. Больше всего было "бутылочного" PET (41%), затем комбинации из двух и более полимеров (17%), по 9% - метилметакрилат и ПВХ, 6% - нейлон и сумма полипропилена/тефлона/силикона/поливинилидена, по 4% - полиэтилен, алкиды и нитрат целлюлозы. Размеры частиц варьировались от 50 до 3510 мкм (средний размер ~606 мкм). Большая часть частиц (81%) была размером < 1000 мкм, 28% — в диапазоне 0–200 мкм.
Так что, активнее используйте бензотриммеры, покупайте самую дешевую леску. Вносите свою лепту в
P.S. микропластик опасен не из-за своей химической природы (например PTFE/PA/PE/PP весьма и весьма химически инертны). Опасность носит морфологический характер - при переходе к наночастицам (нановолокнам) вещества проявляют совершенно не характерные для них свойства. Механизмы такого действия я немного освещал на примере асбеста (ссылка)
#микропластик, #microplastics
Полевая водоподготовка. Часть IV. Убираем взвеси в воде (муть)
Оказывается главная "пользовательская" проблема у outdoor-воды, это отнюдь не невидимые глазом бактерии и вирусы. А режущая невооруженный глаз мутность и цветность. Ранее рекомендованные биоцидные средства (вроде этих) с мутной водой справится не могут, но и не должны. Их задача обеззараживание, т.е. уничтожение всех биологических загрязнителей (вирусы, бактерии, грибки). А для того, чтобы вода была приятной органолептически я и предалагал всегда комбинировать обеззараживание с отстаиванием и грубой фильтрацией (подробно про нее я писал в статье "Когда молчит водоканал").
Но отстаивание - это чаще всего очень неэффективная процедура. Взвеси в воде в большинстве случаев представляют собой стабильные коллиодные системы (гидрозоли) и оседать под силой тяжести (седиментировать) не спешат. Чтобы этот процесс ускорить применяются коагулянты&флокулянты. Коагулянты нейтрализуют заряд у частиц взвеси, и дестабилизируют коллоидную систему, частицы начинают слипаться и формировать агрегаты. А флокулянты способствуют объединению агрегатов в агломераты, легко оседающие хлопья-флокулы и приводят к укрупнению осадка. Подробно принцип работы этих реагентов показан на картинке.
Самые дешевые и распространенные коагулянты - это неорганические соли. В первую мировую использовали алюмокалиевые квасцы KAl(SO₄)₂, а во времена ВОВ основным коагулянтом был алюмосиликат калия и натрия (Na,K)AlSiO₄ - нефелин. Без коагулянтов же любые фильтры грубой очистки очень быстро забивались.
Сегодня чаще всего используют сульфат алюминия Al₂ (SO₄)₃ при рН 6.5-7.5, сульфат железа Fe₂(SO₄)₃ при рН 4–6/8.8–9.2, хлорид железа FeCl₃ при рН 4-11. Для жесткой воды применяют алюминат натрия Na₂Al₂O₄. Для вод с низким рН/щелочностью применяют неорганический полимер полиоксихлорид алюминия Al₁₃(OH)₂₀(SO)₄Cl₁₅. Для вод загрязненных эмульсиями масел используют полисульфат железа Fe₂(OH)₀.₆(SO₄)₂.₇
В качестве флокулянтов чаще всего используются органические полиэлектролиты - полиакриламид, полиэтиленоксид этиленимин, аминоэтил метакрилат. Может применяться и т.н. активная кремниевая кислота (SiO₂·H₂O).
Методика обработки (на примере некой условной болотной воды) выглядит так: вода из источника отстаивается, чтобы осели крупные тяжелые частицы. Жидкость аккуратно снимается с осадка (переливается в другую емкость) и по каплям добавляется коагулянт (оксихлорид алюминия). Однородная взвесь начинает выпадать в виде рыхлого объемного осадка. Добавляется флокулянт (полиакриламид) и осадок уплотняется и быстро оседает. Выжидаем 5-10 минут и фильтруем воду через любой сетчатый фильтр (тканевый) в емкость для кипячения или последующей обработки обеззараживающими "водными таблетками" (ссылка).
Метод доступный (мизерный расход реагентов) и очень эффективный (особенно в летнее время с теплой водой). Главный минус - требует понимания сути процесса, "залил по максимуму и забыл" - не сработает. Вода из разных источников характеризуется разным составом взвесей и требует различного количества реагентов. В промышленной водоподготовке используют т.н. проточные детекторы (англ. streaming current detector) которые измеряют суммарный поверхностный заряд частиц (через ζ-потенциал). При добавлении коагулянта заряд меняется, и при нулевом значении можно считать что доза коагулянта оптимальна. Для полевых условий такой вариант недоступен, учится лучше на нескольким емкостях с одинаковым объемом воды и разными дозами коагулянта. Где вода получается прозрачнее - там и доза оптимальнее. А с опытом вырабатывается и "коагулянтная интуиция" :)
На фото: такой вот "водный набор" ездит в моем рюкзаке. Безотказно работает с любой водой из поверхностных источников (болотная, луговая, речная etc)
Оказывается главная "пользовательская" проблема у outdoor-воды, это отнюдь не невидимые глазом бактерии и вирусы. А режущая невооруженный глаз мутность и цветность. Ранее рекомендованные биоцидные средства (вроде этих) с мутной водой справится не могут, но и не должны. Их задача обеззараживание, т.е. уничтожение всех биологических загрязнителей (вирусы, бактерии, грибки). А для того, чтобы вода была приятной органолептически я и предалагал всегда комбинировать обеззараживание с отстаиванием и грубой фильтрацией (подробно про нее я писал в статье "Когда молчит водоканал").
Но отстаивание - это чаще всего очень неэффективная процедура. Взвеси в воде в большинстве случаев представляют собой стабильные коллиодные системы (гидрозоли) и оседать под силой тяжести (седиментировать) не спешат. Чтобы этот процесс ускорить применяются коагулянты&флокулянты. Коагулянты нейтрализуют заряд у частиц взвеси, и дестабилизируют коллоидную систему, частицы начинают слипаться и формировать агрегаты. А флокулянты способствуют объединению агрегатов в агломераты, легко оседающие хлопья-флокулы и приводят к укрупнению осадка. Подробно принцип работы этих реагентов показан на картинке.
Самые дешевые и распространенные коагулянты - это неорганические соли. В первую мировую использовали алюмокалиевые квасцы KAl(SO₄)₂, а во времена ВОВ основным коагулянтом был алюмосиликат калия и натрия (Na,K)AlSiO₄ - нефелин. Без коагулянтов же любые фильтры грубой очистки очень быстро забивались.
Сегодня чаще всего используют сульфат алюминия Al₂ (SO₄)₃ при рН 6.5-7.5, сульфат железа Fe₂(SO₄)₃ при рН 4–6/8.8–9.2, хлорид железа FeCl₃ при рН 4-11. Для жесткой воды применяют алюминат натрия Na₂Al₂O₄. Для вод с низким рН/щелочностью применяют неорганический полимер полиоксихлорид алюминия Al₁₃(OH)₂₀(SO)₄Cl₁₅. Для вод загрязненных эмульсиями масел используют полисульфат железа Fe₂(OH)₀.₆(SO₄)₂.₇
В качестве флокулянтов чаще всего используются органические полиэлектролиты - полиакриламид, полиэтиленоксид этиленимин, аминоэтил метакрилат. Может применяться и т.н. активная кремниевая кислота (SiO₂·H₂O).
Методика обработки (на примере некой условной болотной воды) выглядит так: вода из источника отстаивается, чтобы осели крупные тяжелые частицы. Жидкость аккуратно снимается с осадка (переливается в другую емкость) и по каплям добавляется коагулянт (оксихлорид алюминия). Однородная взвесь начинает выпадать в виде рыхлого объемного осадка. Добавляется флокулянт (полиакриламид) и осадок уплотняется и быстро оседает. Выжидаем 5-10 минут и фильтруем воду через любой сетчатый фильтр (тканевый) в емкость для кипячения или последующей обработки обеззараживающими "водными таблетками" (ссылка).
Метод доступный (мизерный расход реагентов) и очень эффективный (особенно в летнее время с теплой водой). Главный минус - требует понимания сути процесса, "залил по максимуму и забыл" - не сработает. Вода из разных источников характеризуется разным составом взвесей и требует различного количества реагентов. В промышленной водоподготовке используют т.н. проточные детекторы (англ. streaming current detector) которые измеряют суммарный поверхностный заряд частиц (через ζ-потенциал). При добавлении коагулянта заряд меняется, и при нулевом значении можно считать что доза коагулянта оптимальна. Для полевых условий такой вариант недоступен, учится лучше на нескольким емкостях с одинаковым объемом воды и разными дозами коагулянта. Где вода получается прозрачнее - там и доза оптимальнее. А с опытом вырабатывается и "коагулянтная интуиция" :)
На фото: такой вот "водный набор" ездит в моем рюкзаке. Безотказно работает с любой водой из поверхностных источников (болотная, луговая, речная etc)
Коагулянты для очистки воды. Plant-based дополнение
Всем хороши коагулянты из неорганических солей, и дешевы, достаточно эффективны, доступны. Но есть и недостатки. Главный - при неправильном дозировании можно получить превышение в питьевой воде по остаточному железу и особенно алюминию. А ионы алюминия нейротоксичны. Превышения по железу хоть и не настолько критичны, но тоже могут вызывать нарушения в пищеварительной системе, окраску зубной эмали и некоторые иные эффекты.
Второй недостаток неорганических коагулянтов - это работа в узких диапазонах рН и чувствительность к жесткости воды. Например сульфат алюминия Al₂ (SO₄)₃ - эффективен в узком дипазоне рН, Na₂Al₂O₄ не эффективен в мягкой воде, Fe₂(SO₄)₃/FeCl₃/FeSO₄ требуют щелочного рН воды. Излишняя же щелочность также портит вкусовые качества воды. Полимерные органические флокулянты могут подвергаться деградации с образованием токсичных мономеров. Полиакриламид, например, дает акриламид. Что это за "добро" я разбирал в статье про суррогаты кофе (ссылка).
Ну и в третьих, все еще существуют беднейшие страны, где отвартительная мутная вода есть, а простейших неорганических солей для коагуляции нет. Сюда же можно отнести и места с гуманитарной катастрофой.
Поэтому в последнее время активно изучается возможность применения коагулянтов из растительного сырья. Сырье это возобновляемо и во многих случаях оказывается даже эффективнее классических неорганических солей. Принцип работы здесь аналогичен неорганике - нейтрализация заряда взвешенных частиц. Основное действующее вещество природных коагулянтов - биополимеры (белки, полисахариды etc). Преимущество биополимеров в том, что они могут работать сразу как коагулянт (положительный заряд у функциональных групп) и флокулянт (полимерные цепи для связывания флокул).
В качестве примера несколько растений известных в наших широтах, экстракты семян из которых эффективно осаждают гидрозоли за счет содержащихся в растениях белков:
🔹Гибискус (семена) - 60 мг/л экстракта при рH ≤10
🔹Арбуз (семена) - 72.3 мг/л экстракта при pH 5
🔹Дыня (семена) - 76.7 мг/л экстракта при pH 7
🔹Красная чечевица (семена) - 26.3 мг/л экстракта при pH 4
🔹Пажитник/Фенугрек (семена) - 300 мг/л экстракта при pH 8.0
🔹Сенна крылатая (семена) - 1000 мг/л экстракта при рН ≤10
В качестве эффективных коагулянтов могут выступать танины из конского каштана, черноствольной акации. Из готовых "коммерческих" биополимеров, пригодных для emergency водоподготовки можно вспомнить желатин, альгинат натрия, хитозан.
#полевая водоподготовка
Всем хороши коагулянты из неорганических солей, и дешевы, достаточно эффективны, доступны. Но есть и недостатки. Главный - при неправильном дозировании можно получить превышение в питьевой воде по остаточному железу и особенно алюминию. А ионы алюминия нейротоксичны. Превышения по железу хоть и не настолько критичны, но тоже могут вызывать нарушения в пищеварительной системе, окраску зубной эмали и некоторые иные эффекты.
Второй недостаток неорганических коагулянтов - это работа в узких диапазонах рН и чувствительность к жесткости воды. Например сульфат алюминия Al₂ (SO₄)₃ - эффективен в узком дипазоне рН, Na₂Al₂O₄ не эффективен в мягкой воде, Fe₂(SO₄)₃/FeCl₃/FeSO₄ требуют щелочного рН воды. Излишняя же щелочность также портит вкусовые качества воды. Полимерные органические флокулянты могут подвергаться деградации с образованием токсичных мономеров. Полиакриламид, например, дает акриламид. Что это за "добро" я разбирал в статье про суррогаты кофе (ссылка).
Ну и в третьих, все еще существуют беднейшие страны, где отвартительная мутная вода есть, а простейших неорганических солей для коагуляции нет. Сюда же можно отнести и места с гуманитарной катастрофой.
Поэтому в последнее время активно изучается возможность применения коагулянтов из растительного сырья. Сырье это возобновляемо и во многих случаях оказывается даже эффективнее классических неорганических солей. Принцип работы здесь аналогичен неорганике - нейтрализация заряда взвешенных частиц. Основное действующее вещество природных коагулянтов - биополимеры (белки, полисахариды etc). Преимущество биополимеров в том, что они могут работать сразу как коагулянт (положительный заряд у функциональных групп) и флокулянт (полимерные цепи для связывания флокул).
В качестве примера несколько растений известных в наших широтах, экстракты семян из которых эффективно осаждают гидрозоли за счет содержащихся в растениях белков:
🔹Гибискус (семена) - 60 мг/л экстракта при рH ≤10
🔹Арбуз (семена) - 72.3 мг/л экстракта при pH 5
🔹Дыня (семена) - 76.7 мг/л экстракта при pH 7
🔹Красная чечевица (семена) - 26.3 мг/л экстракта при pH 4
🔹Пажитник/Фенугрек (семена) - 300 мг/л экстракта при pH 8.0
🔹Сенна крылатая (семена) - 1000 мг/л экстракта при рН ≤10
В качестве эффективных коагулянтов могут выступать танины из конского каштана, черноствольной акации. Из готовых "коммерческих" биополимеров, пригодных для emergency водоподготовки можно вспомнить желатин, альгинат натрия, хитозан.
#полевая водоподготовка
Опять про микропластик
Если вы думали что я поднял вопрос микропластика с бухты-барахты, без оглядки на свою любимую специализацию, то вы ошибались. Я не был бы последним из школы беларуской адсорбции, если бы не нашел в микропластике адсорбент :)
Чаще всего различные экопорталы говоря о вреде микропластика, пишут про то, что он вредит морским организмам, инкорпорируется в их ткани и нарушает их функции. Далее через морепродукты микропластик попадает и в людей. Таким образом некому условному жителю Белынич совершенно наплевать на микропластик - морепродукты автолавка не возит, море...На море (в Палангу) только родители один раз ездили "при союзе".Большинство надежно "защищено" от микропластика своим невежеством.
Но не тут то было. Микропластик ко всему еще и неплохой, достаточно селективный поглотитель. Т.е. способен целенаправленно извлекать из воды/почвы органические соединения, концентрировать их на своих частицах, а затем, при удобном случае, высвобождать. Способов извлечения множество, самые распространенные показаны на картинке под заметкой. Немного конкретики (то, что точно установлено на сегодняшний день) насчет избирательности некоторых видов микропластика. Сокращения: пк-полукристалличный, ам-аморфный, пн-полярный, нпн-неполярный
♳Полиэтилентерефталат (пк, нпн). Сорбирует фенолы и хлорфенолы (гидрофобные взаимодействия) из грунтовых вод.
♳Полиэтилен (пк, нпн). Сорбирует малатион(ваш любимый "брат зарина" пестицид), фипронил (межчастичная диффузия), имидаклоприд (физ.адсорбция) из грунтовых вод. Огородные пленки и их обрывки сорбируют пестициды за счет гидрофобных взаимодействий.
♸Полистирол (ам, нпн). Сорбирует окситетрациклин (межчастичная диффузия), цефалоспорин (электростатические взаимодействия), сульфадимезин, диклофенак из грунтовых вод.
♵ Поливинилхлорид (ам, пн). Состаренный ПВХ сорбирует ципрофлоксацин и эстрадиол (образование водородных связей и п-п связывание) из грунтовых вод.
♹ Нейлон (пк, сильно пн). Сорбирует бензол, хлорбензол, нафталины (сильные п-п взаимодействия) из поверхностных вод и почвы
Все? Конец? Никак из воды микропластик не убрать? К счастью, можно. Лучший способ удаления микропластика из воды - коагуляция&флокуляция (в Чехии, например, почти весь PE микропластик из питьевой воды удаляют коагуляцией хлоридом алюминия AlCl₃ в комбинации с фильтрацией через песок). Причем чем частицы меньше - тем эффективнее они фиксируются флокулами. Так что каждый "борец с микропластиком" просто обязан ориентироваться в коагулянтах :)
Если вы думали что я поднял вопрос микропластика с бухты-барахты, без оглядки на свою любимую специализацию, то вы ошибались. Я не был бы последним из школы беларуской адсорбции, если бы не нашел в микропластике адсорбент :)
Чаще всего различные экопорталы говоря о вреде микропластика, пишут про то, что он вредит морским организмам, инкорпорируется в их ткани и нарушает их функции. Далее через морепродукты микропластик попадает и в людей. Таким образом некому условному жителю Белынич совершенно наплевать на микропластик - морепродукты автолавка не возит, море...На море (в Палангу) только родители один раз ездили "при союзе".
Но не тут то было. Микропластик ко всему еще и неплохой, достаточно селективный поглотитель. Т.е. способен целенаправленно извлекать из воды/почвы органические соединения, концентрировать их на своих частицах, а затем, при удобном случае, высвобождать. Способов извлечения множество, самые распространенные показаны на картинке под заметкой. Немного конкретики (то, что точно установлено на сегодняшний день) насчет избирательности некоторых видов микропластика. Сокращения: пк-полукристалличный, ам-аморфный, пн-полярный, нпн-неполярный
♳Полиэтилентерефталат (пк, нпн). Сорбирует фенолы и хлорфенолы (гидрофобные взаимодействия) из грунтовых вод.
♳Полиэтилен (пк, нпн). Сорбирует малатион
♸Полистирол (ам, нпн). Сорбирует окситетрациклин (межчастичная диффузия), цефалоспорин (электростатические взаимодействия), сульфадимезин, диклофенак из грунтовых вод.
♵ Поливинилхлорид (ам, пн). Состаренный ПВХ сорбирует ципрофлоксацин и эстрадиол (образование водородных связей и п-п связывание) из грунтовых вод.
♹ Нейлон (пк, сильно пн). Сорбирует бензол, хлорбензол, нафталины (сильные п-п взаимодействия) из поверхностных вод и почвы
Все? Конец? Никак из воды микропластик не убрать? К счастью, можно. Лучший способ удаления микропластика из воды - коагуляция&флокуляция (в Чехии, например, почти весь PE микропластик из питьевой воды удаляют коагуляцией хлоридом алюминия AlCl₃ в комбинации с фильтрацией через песок). Причем чем частицы меньше - тем эффективнее они фиксируются флокулами. Так что каждый "борец с микропластиком" просто обязан ориентироваться в коагулянтах :)
Простейший "дачный" коагулянт
"Где взять все то, про что вы пишете" - часто задаваемый вопрос. Действительно, полимерные неорганические коагулянты достаточно сложно найти и приобрести в небольшом количестве (т.е. меньше 25 кг мешка). Но для несложных задач, вроде коагуляции болотной воды в походе или для очистки ведра мутной воды на даче вполне можно обойтись подручными средствами.
Самый доступный (почти что повсеместно) коагулянт - это алюмокалиевые квасцы KAl(SO₄)₂·12H₂O. Активно они применяются в промышленности, используются как пищевая добавка E522. Но главное эта двойная соль продается в аптеках под названием "жженые квасцы". Жженый = безводная соль KAl(SO₄)₂. Используется препарат как дерматологическая присыпка при гипергидрозах. Получают эту соль из минерала алунита (используется в твердых минеральных дезодорантах типа Crystal). Алунит обжигается при 600 °С, выщелачивают водой и из раствора упариванием кристаллизуют квасцы.
Для использования в качестве коагулянта лучше приготовить 10% раствор - залить 10 г жженых квасцов 90 г подогретой воды. Перед очисткой большого объема воды проводится "баночный тест". В одинаковые прозрачные емкости заливается мутная вода и при перемешивании добавляется x...2x...4x...6x капель коагулянта. После 3-5 минут оценивается прозрачность воды, для определения оптимальной дозы коагулянта. Потом этой дозой (с пропорциональным пересчетом объема) обрабатывается бОльший объем воды. В качестве доступного флокулянта с квасцами отлично работает 1% раствор Na-КМЦ (карбоксиметилцеллюлоза~"экологичный клей для обоев").
"Где взять все то, про что вы пишете" - часто задаваемый вопрос. Действительно, полимерные неорганические коагулянты достаточно сложно найти и приобрести в небольшом количестве (т.е. меньше 25 кг мешка). Но для несложных задач, вроде коагуляции болотной воды в походе или для очистки ведра мутной воды на даче вполне можно обойтись подручными средствами.
Самый доступный (почти что повсеместно) коагулянт - это алюмокалиевые квасцы KAl(SO₄)₂·12H₂O. Активно они применяются в промышленности, используются как пищевая добавка E522. Но главное эта двойная соль продается в аптеках под названием "жженые квасцы". Жженый = безводная соль KAl(SO₄)₂. Используется препарат как дерматологическая присыпка при гипергидрозах. Получают эту соль из минерала алунита (используется в твердых минеральных дезодорантах типа Crystal). Алунит обжигается при 600 °С, выщелачивают водой и из раствора упариванием кристаллизуют квасцы.
Для использования в качестве коагулянта лучше приготовить 10% раствор - залить 10 г жженых квасцов 90 г подогретой воды. Перед очисткой большого объема воды проводится "баночный тест". В одинаковые прозрачные емкости заливается мутная вода и при перемешивании добавляется x...2x...4x...6x капель коагулянта. После 3-5 минут оценивается прозрачность воды, для определения оптимальной дозы коагулянта. Потом этой дозой (с пропорциональным пересчетом объема) обрабатывается бОльший объем воды. В качестве доступного флокулянта с квасцами отлично работает 1% раствор Na-КМЦ (карбоксиметилцеллюлоза~"экологичный клей для обоев").
This media is not supported in your browser
VIEW IN TELEGRAM
Погружение внутрь потовой железы :)
Внимательный читатель заметил, что мой походный коагулянт - гидроксихлорид алюминия - это действующее вещество большинства дезодорантов.
Так оно и есть. Википедии пишут, что в процессе работы дезодоранта (при контакте пота и гидроксихлорида) образуется гель гидроксида алюминия, который закупоривает проток потовой железы как крышка. На самом деле все не так. В видео показан этот процесс (скорость х30 относительно realtime).
После нанесения антиперспиранта процесс диффузии гонит поликатионы алюминия внутрь потового протока. Там эти катионы заставляют коагулировать белки пота. Белки всегда есть в выделениях апокринных желез (подмышки), а в эккринных железах их нет, т.е. мазать ноги антиперспирантом бессмысленно. Скоагулировавшие белки прикрепляются к шероховатостям стенки потового протока и образуют перемычку. Дальше как снежный ком растет количество перемычек и проток закрывается.
P.S. Алунит-дезодорант (Crystal) алюминий содержит, но как Al₂Cl(OH)₅ все равно не может
Внимательный читатель заметил, что мой походный коагулянт - гидроксихлорид алюминия - это действующее вещество большинства дезодорантов.
Так оно и есть. Википедии пишут, что в процессе работы дезодоранта (при контакте пота и гидроксихлорида) образуется гель гидроксида алюминия, который закупоривает проток потовой железы как крышка. На самом деле все не так. В видео показан этот процесс (скорость х30 относительно realtime).
После нанесения антиперспиранта процесс диффузии гонит поликатионы алюминия внутрь потового протока. Там эти катионы заставляют коагулировать белки пота. Белки всегда есть в выделениях апокринных желез (подмышки), а в эккринных железах их нет, т.е. мазать ноги антиперспирантом бессмысленно. Скоагулировавшие белки прикрепляются к шероховатостям стенки потового протока и образуют перемычку. Дальше как снежный ком растет количество перемычек и проток закрывается.
P.S. Алунит-дезодорант (Crystal) алюминий содержит, но как Al₂Cl(OH)₅ все равно не может
Вспотевшим посвящается...
Я решил немного развернуть тему антиперспирантов и расширить ее на пот. Читаем на хабре про вещества, которые отвечают за "козлиный запах"/"пот индусов", про дубление кожи подмышек Crystal-квасцами и про другие аэро-удовольствия переполненного общественного транспорта и методы минимизации ущерба от них
P.S. Кто-то когда-то в русскоязычном Интернете должен был написать статью, посвященную поту. Буду я. Ибо потеть и естественно терморегулироваться я люблю :)
Я решил немного развернуть тему антиперспирантов и расширить ее на пот. Читаем на хабре про вещества, которые отвечают за "козлиный запах"/"пот индусов", про дубление кожи подмышек Crystal-квасцами и про другие аэро-удовольствия переполненного общественного транспорта и методы минимизации ущерба от них
P.S. Кто-то когда-то в русскоязычном Интернете должен был написать статью, посвященную поту. Буду я. Ибо потеть и естественно терморегулироваться я люблю :)
Хабр
Потные истории. Введение в антиперспирант
Периодически (особенно с приходом жары) в комьюнити LAB-66 появляются читатели, которые просят написать про дезодоранты. Их можно понять, но эта тема (дезодорантов) слишком истрепана различными...
Зеркало статьи про пот и дезодоранты
Оказывается у многих к Хабру нет доступа. Что ж, это печальноу хабра все ж лучший в мире редактор текстов, но не критично, ибо у нас есть MEDIUM. Читаем отзеркаленную статью по ссылке 👇:
📜 https://steanlab.medium.com/antiperspirants
Оказывается у многих к Хабру нет доступа. Что ж, это печально
📜 https://steanlab.medium.com/antiperspirants
Medium
Потные истории. Введение в антиперспирант
Пот и дезодоранты-антиперспиранты с точки зрения химии
Многим, оказывается, нравится дубяще-вяжущее действие ("псевдодезодорирующее"), которое квасцы оказывают на кожу подмышечной впадины. Поэтому я решил стряхнуть пыль со своего конспекта по неорг.фарм.хим (огромный теплый привет профессору Н.В. Логиновой) и написать про другие вещества этой же группы.
Еще раз напомню, что вяжущие средства вызывают сжатие биологических тканей (≈ местный сосудосуживающий эффект+уменьшение проницаемости тканей), а попутно часто денатурируют поверхностные белки, вызывают агглютинацию тромбоцитов и проч. Сокращения: косм. - используется в косметических средствах.
🔮Помимо квасцов - алюмокалиевых KAl(SO₄)₂ и алюмонатриевых AlNa(SO₄)₂, к вяжущим/кровоостанавливающим можно отнести и другие соли алюминия - хлорид AlCl₃ (косм.), сульфат Al₂(SO₄)₃, ацетат Al(CH₃COO)₃ , 8% р-р которого известен как "жидкость БуроваКарла Генриха"
🔮Соли цинка: хлорид ZnCl₂, сульфат ZnSO₄, ацетат Zn(CH₃COO)₂ (косм.), фенолсульфонат (косм.)
🔮Соли железа: хлорид FeCl₃
🔮Соли стронция(cтабильного!): хлорид SrCl₂
🔮Соли серебра: нитрат AgNO₃ ("ляписный карандаш")
🔮Соли меди: сульфат CuSO₄ ("медный купорос")
Прим: дубящим действием обладают многие соли тяжелых металлов (хрома, ртути, свинца etc.), но я не буду их здесь упоминать по токсикологическим причинам.Не нужен нам такой дезодорант!
Среди органических вяжущих наиболее известны вещества полифенольной природы - подмножество дубильных веществ. В фармации чаще всего используются танин/дубильная кислота (~1% растворы) и галловая кислота. Обладают вяжущими свойствами винная кислота, бета-ионон (косм.), безводный этиловый спирт.
При всем моем скептическом отношении к вяжущим средствам в роли "дезодоранта/антиперспиранта" я должен отметить что в некоторых других случаях вещи это незаменимые. Например при мелких порезах после бритья, незначительных царапинах кожи (от колючек растений), при укусах насекомых (той же мошки/слепней/мокрецов) и животных, при акне и некоторых грибковых заболеваниях (микозы стоп).
Еще раз напомню, что вяжущие средства вызывают сжатие биологических тканей (≈ местный сосудосуживающий эффект+уменьшение проницаемости тканей), а попутно часто денатурируют поверхностные белки, вызывают агглютинацию тромбоцитов и проч. Сокращения: косм. - используется в косметических средствах.
🔮Помимо квасцов - алюмокалиевых KAl(SO₄)₂ и алюмонатриевых AlNa(SO₄)₂, к вяжущим/кровоостанавливающим можно отнести и другие соли алюминия - хлорид AlCl₃ (косм.), сульфат Al₂(SO₄)₃, ацетат Al(CH₃COO)₃ , 8% р-р которого известен как "жидкость Бурова
🔮Соли цинка: хлорид ZnCl₂, сульфат ZnSO₄, ацетат Zn(CH₃COO)₂ (косм.), фенолсульфонат (косм.)
🔮Соли железа: хлорид FeCl₃
🔮Соли стронция
🔮Соли серебра: нитрат AgNO₃ ("ляписный карандаш")
🔮Соли меди: сульфат CuSO₄ ("медный купорос")
Прим: дубящим действием обладают многие соли тяжелых металлов (хрома, ртути, свинца etc.), но я не буду их здесь упоминать по токсикологическим причинам.
Среди органических вяжущих наиболее известны вещества полифенольной природы - подмножество дубильных веществ. В фармации чаще всего используются танин/дубильная кислота (~1% растворы) и галловая кислота. Обладают вяжущими свойствами винная кислота, бета-ионон (косм.), безводный этиловый спирт.
При всем моем скептическом отношении к вяжущим средствам в роли "дезодоранта/антиперспиранта" я должен отметить что в некоторых других случаях вещи это незаменимые. Например при мелких порезах после бритья, незначительных царапинах кожи (от колючек растений), при укусах насекомых (той же мошки/слепней/мокрецов) и животных, при акне и некоторых грибковых заболеваниях (микозы стоп).
Дерматологическое чтиво на выходные
Я редко рекомендую какие-то книги, но сейчас, в свете треда про кожу, просто не могу не упомянуть одну превосходную книгу по теме.
Это достаточно старая работа немецкого дерматолога Йаэль Адлер. Книга с названием Haut nah(Вблизи) была опубликована в Германии в 2016 году и очень быстро заняла место в списке бестселлеров. На сегодня переведена на 35 языков.
В РФ издание выпущено в пер. Т. Б. Юринова под названием "Что скрывает кожа. 2 квадратных метра, которые диктуют, как нам жить". В Украине - в пер. С. В. Зубченка под названием "Зовнішня історія. Що приховує шкіра?".В Беларуси ничего не выпущено.
Текст представляет собой практически идеальный образец научно-популярной дерматологии. Когда писал свою статью про кожу и накипь (ссылка), в книгу д-ра Адлер я периодически заглядывал. Заглядывал и сейчас, когда писал про кожу и пот (ссылка). Технических огрехов не замечено, единственное, что с 2016 года некоторые научные результаты были уточнены (в т.ч. по запахам).
Я редко рекомендую какие-то книги, но сейчас, в свете треда про кожу, просто не могу не упомянуть одну превосходную книгу по теме.
Это достаточно старая работа немецкого дерматолога Йаэль Адлер. Книга с названием Haut nah
В РФ издание выпущено в пер. Т. Б. Юринова под названием "Что скрывает кожа. 2 квадратных метра, которые диктуют, как нам жить". В Украине - в пер. С. В. Зубченка под названием "Зовнішня історія. Що приховує шкіра?".
Текст представляет собой практически идеальный образец научно-популярной дерматологии. Когда писал свою статью про кожу и накипь (ссылка), в книгу д-ра Адлер я периодически заглядывал. Заглядывал и сейчас, когда писал про кожу и пот (ссылка). Технических огрехов не замечено, единственное, что с 2016 года некоторые научные результаты были уточнены (в т.ч. по запахам).
Adler_Chto_skryvaet_kozha_2_kvadratnyh_metra_kotorye_diktuyut_ka.zip
1.6 MB
Книга Что скрывает кожа. 2 квадратных метра, которые диктуют, как нам жить в формате FB2. Те, кто переживает за нарушение авторских прав - могут на amazon за 13$ приобрести книгу автора в оригинале (на немецком языке).
♫ Вариант на русском языке в формате аудиокниги (MP3 64 kbps) можно скачать по ссылке
p.s. не рекомендуется для слишком чувствительных/впечатлительных людей, науч-поп настоящий, техничный, немецкий :)
♫ Вариант на русском языке в формате аудиокниги (MP3 64 kbps) можно скачать по ссылке
p.s. не рекомендуется для слишком чувствительных/впечатлительных людей, науч-поп настоящий, техничный, немецкий :)