Spring Boot — это не «новый фреймворк», а надстройка над Spring, которая убирает рутину и ускоряет разработку.
В обычном Spring нужно было вручную конфигурировать всё: от DataSource до DispatcherServlet. В Boot это делается автоматически через автоконфигурацию.
🔹 Как работает автоконфигурация
Spring Boot сканирует зависимости и classpath, а затем подключает нужные бины:
— Если у вас есть spring-boot-starter-data-jpa, Boot автоматически создаст EntityManagerFactory, DataSource, транзакционный менеджер.
— Если добавлен spring-boot-starter-web, он поднимет встроенный Tomcat/Jetty и зарегистрирует контроллеры. И так далее.
Магия кроется в аннотации @EnableAutoConfiguration (включается через @SpringBootApplication). Она загружает META-INF/spring.factories → список классов-конфигов → каждый проверяет условия @ConditionalOnClass, @ConditionalOnMissingBean и решает: активироваться или нет.
Потому что в Boot сотни готовых конфигураций «на все случаи жизни».
Фактически, это огромная библиотека «если увидишь X — настрой Y».
— Черный ящик
Легко забыть, что именно сконфигурировал Boot. Иногда приходится «копать» в автоконфигурацию, чтобы понять, какой бин реально используется.
— Избыточные зависимости
Подключив Starter, можно случайно притащить половину экосистемы Spring. Это увеличивает время старта и усложняет дебаг.
— Конфликт настроек
Собственная конфигурация может пересечься с автоконфигурацией.
⚡️ Хорошая практика
— Не доверяйте «чёрному ящику»: при старте приложения смотрите Spring Boot Actuator и логи автоконфигурации.
— Знайте про
--debug
при старте: он показывает, какие автоконфигурации включены или отключены.— В продакшене лучше контролировать, какие именно стартеры вы тянете. Иногда spring-boot-starter-web приносит в проект в три раза больше, чем реально нужно.
🎯 Итог
Spring Boot — это ускоритель, но не магия. Его сила в автоконфигурациях, а слабость в том, что легко потерять контроль.
Понимание того, как работает @EnableAutoConfiguration и условия @Conditional, отличает разработчика, который «просто пишет на Boot», от того, кто реально управляет приложением.
#CoreJava
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9❤2🔥1😁1
🔥 Задача на алгоритмы: оптимизация расписания задач
Иногда даже повседневные задачи превращаются в отличный повод вспомнить алгоритмы и потренировать мозг. Особенно если представить, что это часть сервиса планирования нагрузок или распределения вычислений в распределённой системе.
🔹 Условие
— У вас есть N задач, каждая с временем выполнения t[i].
— Есть K воркеров (потоков, серверов), которые могут выполнять задачи параллельно, но каждый воркер может брать только одну задачу за раз.
💡 Пример:
🔹 Уточнения
— N может достигать 10⁴
— K до 100
— Допустимо небольшое отклонение от оптимума (например, ≤5%)
— Требуется O(N log N) или лучше
— Можно предусмотреть балансировку “на лету” при поступлении новых задач
🔹 Вопрос
Какой алгоритм примените для минимизации времени выполнения?
Подумайте о вариантах:
— жадный
— динамическое программирование
— приближённые решения (если N велико)
🔹 Подсказки
—Это классическая NP-трудная задача разбиения множества (Partition Problem)
—На практике часто решается жадным алгоритмом LPT (Longest Processing Time first)
👇🏻 Скелет решения предложили в комментах.
💬 Делитесь своими решениями: какой алгоритм выбрали бы для продакшена, а какой — для интервью?
🐸 Библиотека джависта
#CoreJava
Иногда даже повседневные задачи превращаются в отличный повод вспомнить алгоритмы и потренировать мозг. Особенно если представить, что это часть сервиса планирования нагрузок или распределения вычислений в распределённой системе.
🔹 Условие
— У вас есть N задач, каждая с временем выполнения t[i].
— Есть K воркеров (потоков, серверов), которые могут выполнять задачи параллельно, но каждый воркер может брать только одну задачу за раз.
Нужно распределить задачи между воркерами так, чтобы время завершения всех задач было минимальным.
t = [3, 7, 2, 5, 4]
K = 2
— если раздать задачи просто по очереди, один воркер закончит через 14 секунд, другой — через 7.
— а если распределить умнее (например, [7,3] и [5,4,2]), итоговое время — 10 секунд.
🔹 Уточнения
— N может достигать 10⁴
— K до 100
— Допустимо небольшое отклонение от оптимума (например, ≤5%)
— Требуется O(N log N) или лучше
— Можно предусмотреть балансировку “на лету” при поступлении новых задач
🔹 Вопрос
Какой алгоритм примените для минимизации времени выполнения?
Подумайте о вариантах:
— жадный
— динамическое программирование
— приближённые решения (если N велико)
🔹 Подсказки
—
—
👇🏻 Скелет решения предложили в комментах.
#CoreJava
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4👏2🔥1