(java || kotlin) && devOps
372 subscribers
6 photos
1 video
6 files
317 links
Полезное про Java и Kotlin - фреймворки, паттерны, тесты, тонкости JVM. Немного архитектуры. И DevOps, куда без него
Download Telegram
Всем привет!

Вот только написал, что исследовательские задачи — точно не место для AI, как на тебе https://t.me/andre_dataist/172 )))

А если серьёзно: в исследованиях тоже есть рутина. И вместо того, чтобы писать скрипты каждый раз — логично поручить «грязную» работу агенту.

P.S. Ещё интересны 4 и 5 уровень развития моделей из поста выше.

#llm #ai #it
👍2
Всем привет!

Я долго держался, но не написать о Deepseek всё же не смог)

Что хотелось бы отметить:
1) Модели уже больше года, а в январе стали известны (распиарены) результаты её последней версии

2) Начиналось всё с модели для разработчиков, называется Coder, потом был Coder v2

3) Тренд на универсализацию моделей продолжается, сейчас Coder недоступен на официальном сайте, только основная модель

4) В окне ввода промпта можно включить объяснение логики получения ответа — и это новый тренд. По сути это данные аудита. В применении к AI-агенту — данные будут храниться определённое время для разбора полётов

5) И последняя фича DeepSeek — возможность AI-поиска, уже не тренд, а скорее становится базовым требованием

6) Разработчики Deepseek связаны с алгоритмическим трейдингом. С одной стороны, это деньги на разработку модели и железо, с другой — источник знаний для оптимизации модели. В алгоритмическом трейдинге решают миллисекунды

7) Ну и наконец — «я же говорил».
Пост про сравнение AI-моделей: https://t.me/javaKotlinDevOps/331. Единственный момент — тогда мне больше понравилась Perplexity. Надо будет сравнить ещё раз)

8) В Perplexity уже встроили модель Deepseek как один из вариантов

9) Deepseek можно развернуть локально, см. инструкцию https://habr.com/ru/articles/878276/. Т. е., в open source выложили всю модель. Удивляют системные требования

10) Ходят слухи, что Deepseek будут внедрять и в одной крупной российской ИТ-компании.

#llm #ai
👍5
Всем привет!

AI быстро развивается, интегрируется с традиционным ПО и было бы странно, если бы и для AI не появились ... свои паттерны)
Встречаем, от одного из лучших специалистов по паттернам: https://martinfowler.com/articles/gen-ai-patterns/

Маленький комментарий: да, AI паттерны могут показаться элементарными, но свою роль они выполняют - это некий язык, кубики, из которых строится архитектура приложения/корпоративная архитектура.
Еще хорошо написано про такую важную штуку как оценка (eval). Ведь модели не идемпотентны - могут менять свой ответ на одних и тех же входных данных. А значит традиционные практики тестирования не подходят. Модель тестирующая сама себя - прямой путь к скайнету) А вот если взять другую модель, а для страховки отдать результат на проверку человеком...

#llm #ai #testing #patterns
👍2
Всем привет!

Не отпускает меня тема AI)
Напомню, что с одной стороны AI ~= Python, но с другой стороны Java потихоньку подтягивается, о чем я уже писал на канале, см. по тегам.

Вот отличный пример генерации данных с помощью AI с запоминанием контекста на Spring AI https://piotrminkowski.com/2025/01/28/getting-started-with-spring-ai-and-chat-model/
Обратите внимание на "магию" Spring - в части преобразования ответа модели в коллекцию.
А вот тут https://piotrminkowski.com/2025/01/30/getting-started-with-spring-ai-function-calling/
на "магию" привязки функций, забирающих данные из API брокера и с сервиса-поставщика биржевой информации к вызову модели.
Красиво, черт возьми!)

P.S. Интересно, учитывая недетерминистическое поведение модели - всегда ли эта магия работает. Буду проверять)

#ai #java #spring
🔥2