(java || kotlin) && devOps
363 subscribers
6 photos
1 video
7 files
337 links
Полезное про Java и Kotlin - фреймворки, паттерны, тесты, тонкости JVM. Немного архитектуры. И DevOps, куда без него
Download Telegram
Основные проблемы AI в разработке.

Я вижу две основные проблемы.

Первая - принципиально недетерминированный ответ как отражение вероятностной природы LLM. Если в креативных задачах это плюс, но в разработке скорее минус.

Вторая - естественный язык не самое лучшее API из-за своей неоднозначности.

И для второй, а частично и для первой проблемы есть решение - паттерн structured output. Суть проста - мы говорим модели, в каком виде хотели бы получить ответ. Это может быть JSON схема или класс Response. Базовый формат - JSON, но он на уровне библиотеки легко трансформируется в класс для большинства языков программирования. Ключевой момент - вызов модели должен вернуть правильный по структуре JSON с вероятностью 100%. И далее его можно или без лишних проверок парсить и передавать на вход следующему методу.

Реализован паттерн должен быть в самой модели, так как на уровне библиотеки или промта гарантии 100% соответствия получить нельзя.

Вот статья с примером использования:
https://habr.com/ru/articles/923096

P.S. Паттерны есть везде, коллекция AI паттернов постепенно растёт)

#ai #llm
Минутка философии на канале)
На тему AI конечно же)

Вопрос - не является ли массовое внедрение AI сейчас (причем со словами везде и надо еще вчера) временным хайпом?

Ответ - даже если и является, очень может быть, что является, AI из разработки уже не уйдет. Как не ушли Agile, DevOps, микросервисы.

Почему - потому что уже на текущем уровне инструмент позволяет автоматизировать рутину малой кровью. Не все модели, не любые задачи - но рабочие кейсы есть. Описание чужого кода, типовой код (маппинг), каркас приложения, базовый набор тестов, замена поиска... И их будет больше.

Вывод - изучать надо)

#ai
👍2💯1