(java || kotlin) && devOps
363 subscribers
6 photos
1 video
7 files
337 links
Полезное про Java и Kotlin - фреймворки, паттерны, тесты, тонкости JVM. Немного архитектуры. И DevOps, куда без него
Download Telegram
Всем привет!

Я уже подымал тему готовых архитектурных решений, а точнее их отсутствия в большинстве случаев https://t.me/javaKotlinDevOps/134
Хочу развернуть тему с другой стороны.

Стоит ли тратить силы на поиск целевого архитектурного решения?

Написал эту фразу, и понял, что не всем она может быть понятна) Расшифрую. В больших компаниях ака "кровавый enterprise" есть некий список разрешенных технологий и архитектурных принципов. Оформленный в виде техрадара, карты технологических стеков и сборника архитектурных стандартов. Это и есть целевая архитектура.

Так вот, беда с этим стандартами одна - со временем их становится слишком много, понять - как сделать правильно, чтобы работало годами без переделки - сложно. Нужно на это тратить время: для того, чтобы обойти всех заинтересованных архитекторов, смежные команды, и выработать целевое решение.

Так вот - а надо ли его искать? Несмотря на то, что ответ вроде бы очевиден, хотел бы подсветить несколько потенциальных проблем.

Затрачивая время на поиск и согласование целевого решения мы взамен хотим получить уверенность, что решение с нами останется "на века". Так ли это? Нет, не так. Во-первых мир меняется очень сильно, бизнес задачи меняются вместе с ним. Во-вторых технологии меняются еще сильнее. В-третьих - "кассандр" среди нас мало, и если есть несколько разрешенных технологий - угадать правильную сложно.

К чему это приводит? Мы потратили время на выбор и реализацию "целевки", а через год нам говорят - переделывайте. Отрицание, гнев, фрустрация. Обида на архитекторов. Причем даже если архитектор признает ошибку (и вообще эта ошибка была) - вряд ли он поможет переписать код. Обида на менеджеров - да они издеваются что ли, вечно меняют правила игры, вечная миграция... Желание сменить компанию...

Поэтому видится, что есть более надежный подход.

1) смириться с тем, что все течет, все меняется, и миграции будут всегда

2) искать целевые решение, но всегда держать в уме, что это целевое решение на данный момент

3) разделить весь код на ядро и инфраструктурный код. Ядро стараться писать на чистой Java \ Kotlin, с минимальным использованием фреймворков. Особенно, внутренних, которые еще не доказали свою стабильность. Внешние интеграции закрывать - предохранительный слой (anticorruption layer), шлюзы (gateway), адаптеры.

4) очень важно - уметь и хотеть быстро выпускать релизы, разбивать любые доработки на небольшие инкременты. Это можно сделать как улучшением качества проектирования, увеличением покрытия тестами и автотестами, так и различного рода договоренностями со смежниками, (не забываем, что мы в "кровавом enterprise")

Если вам показывался знакомым последний пункт - то да, это Agile. Или то самое снижение Lead Time (LT), о котором любят говорить менеджеры. И не только говорить) Но в данном случае они правы.

Еще пример - фондовый рынок и диверсификация. Диверсификация считается основным принципом разумного инвестора, и означает, что нельзя "класть все яйца в одну корзину". Т.е. нужно покупать разные классы активов: акции, облигации, вклады, кэш, золото, недвижимость. Причина - сложно угадать, что именно "выстрелит". В случае кода сложно конечно реализовать диверсификацию прямолинейно: часть данных хранить в PostgreSQL, а часть - в Oracle. Да и не нужно. Но предусмотреть возможность замены поставщика - нужно.

#agile #arch #arch_compromisses
👍2
Качественное ли у вас API? А чем докажете?)

Как мы проверяем код на качество? SonarQube, покрытие кода тестами. Если говорить о code style - CheckStyle-ом. Если говорить об уязвимостях - проверка по базам уязвимостей (разные тулы), Checkmarx.

А можно ли как-то проверить API на соответствие лучшим практикам? В частности, OpenAPI как самый типовой на данный момент вариант.
Да - для этого есть Spectral linter https://meta.stoplight.io/docs/spectral/a630feff97e3a-concepts

У него три основных достоинства:
1) это linter и его можно включить в CI pipeline

2) у него есть наборы предустановленных правил, в частности:
а) OpenAPI rules https://meta.stoplight.io/docs/spectral/4dec24461f3af-open-api-rules
б) URL rules https://apistylebook.stoplight.io/docs/url-guidelines - использование kebab-case, не использование get в URL...
в) OWASP rules https://apistylebook.stoplight.io/docs/owasp-top-10 - безопасность, например, использование uuid вместо чисел в идентификаторах
...

3) возможность добавлять свои правила https://meta.stoplight.io/docs/spectral/01baf06bdd05a-create-a-ruleset в том числе наследуясь от существующих

Ну и отдельно отмечу, что есть плагин для IDEA https://plugins.jetbrains.com/plugin/25989-spectral-linter

Итого - штука полезная, настоятельно рекомендую попробовать.

#api #arch #code_quality
Должен ли код быть сложным?

Для ответа на данный вопрос предлагаю разделить сложность кода на 2 категории - естественная и, соответственно, искусственная.

Естественная сложность кода будет всегда, т.к. причина ее появления - сложность предметной области. Это может быть сложная логика бизнес-процесса. Или возьмем Spring Core - там достаточно сложный жизненный цикл бинов, множество способов описания этих бинов, способов конфигурации, профили.... Я уже не говорю про JDK: модель байт-кода, компиляция, виртуальная машина, classloading, верификация байт-кода, JIT и оптимизации\отмена оптимизаций, сборка мусора, модель памяти, многопоточка и синхронизация доступа, поддержка различных архитектур процессора и ОС, отладка, профилирование, версионирование и обратная совместимость...
Есть понятные пути борьбы с естественной сложностью - микросервисы, слоистая архитектура, DDD и собственно объектно-ориентированное проектирование. Особенность этой сложности - она будет всегда.

Чего быть не должно - так это искусственной сложности. Причем тут бы я снова выделил две подкатегории:
1) то, на что указывают такие штуки как "большой ком грязи" или "божественный класс". Т.е. когда логика выполнения запутана потому, что за этим перестали следить. Или, в худшем случае, изначально не уделяли внимания проектированию. Усугубляет ситуацию здесь отсутствие базовой документации или ее неактуальность, огромное число ненужных настроек, плохой нейминг. Особенность этой категории сложности - вряд ли кто-то, кто увидит такой код, будет его хвалить. Все признают проблему, в т.ч. авторы. Решение - рефакторинг или переписывание кода с нуля.

2) искусственная сложность, сделанная с соблюдением принципов SOLID, ООП и слоистой архитектуры. Типичный пример здесь: микросервис с минимумом бизнес-логики, который можно сделать с использованием паттерна Transaction Script, но вместо этого появляется 3+ слоя, доменная модель, куча интерфейсов с одной реализацией, цепочка из вызовов сервисов, каждый из которых отвечает за одну функциональность по SOLID - авторизация, валидация, маппер, мониторинг, аудит, инициализация сетевых параметров, еще маппер, интеграционные логи, Circuit Breaker... Вроде все по правилам, а из простого сервиса сделан монстр, разобраться в котором очень сложно. Хотя на самом деле - правила нарушается. Как минимум правило KISS - Keep It Simple Stupid. Как максимум - не надо в том же Single Responsibility из SOLID идти до конца и для каждой функциональности, занимающей одну строчку код, делать класс. Как минимум делать это прямо сейчас. У нас же архитектура в коде. Код можно менять. В отличие от архитектуры здания, например. А разработка - это искусство компромиссов. Ну а главная проблема этой категории сложности - авторы кода точно ее не признают. Раз пишут такой код)

Итого - с любой сложностью можно и нужно бороться. Но особенно вредна искусственная сложность. По определению)

#arch #solid #complexity #principles #dev_compomisses