Всем привет!
Поговорим снова о микросервисах. Я уже писал, почему не стоит делать слишком мелкие микросервисы https://t.me/javaKotlinDevOps/305
Но встает закономерный вопрос - "сколько вешать в граммах", в смысле - а какого размера должны быть микросервисы?
Обозначим нижний и верхний предел, а для этого придется вспомнить DDD.
Для начала рассмотрим понятие ограниченного контекста (bounded context). Это связанный набор сущностей из реального мира, для наименования которых используется "единый язык" (ubiquitous language) - непротиворечивый набор терминов. Эти сущности описываются в аналитике, тест-кейсах и превращаются в классы в нашем сервисе и в таблицы в БД. Контекстом как правило занимается одна команда - так проще всего поддерживать "единый язык". И за микросервис тоже должна отвечать одна команда. Т.е. ограниченный контекст - это отличный кандидат на микросервис. Но при этом у одной команды может быть несколько микросервисов. И контекст может быть достаточно большим. Т.е. у нас есть верхняя граница микросервиса.
Теперь рассмотрим понятие агрегата - группу сущностей, имеющую уникальный идентификатор, изменение которой производится атомарно. Т.е. агрегат - граница транзакции в БД. А т.к. возможность делегировать управление транзакцией СУБД - это очень крутая штука, то разделять агрегат между разными БД не стоит. При этом один микросервис = одна БД. Поэтому агрегат - нижняя граница микросервиса.
#microservices #ddd
Поговорим снова о микросервисах. Я уже писал, почему не стоит делать слишком мелкие микросервисы https://t.me/javaKotlinDevOps/305
Но встает закономерный вопрос - "сколько вешать в граммах", в смысле - а какого размера должны быть микросервисы?
Обозначим нижний и верхний предел, а для этого придется вспомнить DDD.
Для начала рассмотрим понятие ограниченного контекста (bounded context). Это связанный набор сущностей из реального мира, для наименования которых используется "единый язык" (ubiquitous language) - непротиворечивый набор терминов. Эти сущности описываются в аналитике, тест-кейсах и превращаются в классы в нашем сервисе и в таблицы в БД. Контекстом как правило занимается одна команда - так проще всего поддерживать "единый язык". И за микросервис тоже должна отвечать одна команда. Т.е. ограниченный контекст - это отличный кандидат на микросервис. Но при этом у одной команды может быть несколько микросервисов. И контекст может быть достаточно большим. Т.е. у нас есть верхняя граница микросервиса.
Теперь рассмотрим понятие агрегата - группу сущностей, имеющую уникальный идентификатор, изменение которой производится атомарно. Т.е. агрегат - граница транзакции в БД. А т.к. возможность делегировать управление транзакцией СУБД - это очень крутая штука, то разделять агрегат между разными БД не стоит. При этом один микросервис = одна БД. Поэтому агрегат - нижняя граница микросервиса.
#microservices #ddd
Telegram
(java || kotlin) && devOps
Всем привет!
При проектировании системы применяя микросервисный подход всегда появляется главный вопрос - как делить?
Сделаешь слишком крупно - получишь маленький монолит. Это как правило всем понятно, т.к. от монолита мы пытаемся уйти создавая микросервисы.…
При проектировании системы применяя микросервисный подход всегда появляется главный вопрос - как делить?
Сделаешь слишком крупно - получишь маленький монолит. Это как правило всем понятно, т.к. от монолита мы пытаемся уйти создавая микросервисы.…
👍4🔥3
Всем привет!
Случайно наткнулся на старую статью - 2015 год - про переход с legacy на Service Oriented Architecture ака SOA.
И хочу сказать, что это хороший пример развития истории по спирали)
Что в статье актуально?
Заменяем слово SOA на микросервисы, и в целом все, что касается преимуществ микросервисной архитектуры и стратегии перехода на нее - актуально. Микросервисы = SOA 2.0 )))
REST оставляем, SOAP+XML заменяем на gRPC\GraphQL для тех случаев, когда требуется большая производительность и гибкость соответственно по сравнению с REST. К слову, недостаток производительности и гибкости - это основные проблемы SOAP. Ремарка - знаю места, где SOAP еще жив (интеграция с госорганами), но он в любом случае вымирает.
ESB, трудности реализации асинхронного взаимодействия - все эти задачи взяла на себя Kafka. Прорывной инструмент - быстрый, надежный (обеспечивает дешевую персистентность), opensource, простой с точки зрения разработчика. В т.ч. потому, что нет необходимости разрабатывать логику маппинга сообщений на брокере. Да, он реализует только одну из двух основных моделей асинхронного взаимодействия - Publisher-Subscriber - и не реализует Message Queue. Но понятно, что топиками можно пользоваться как заменой очередей, и в большинстве случаев проблем при этом не будет.
Облачные решения - за 10 лет из вызова превратились в новую реальность)
А вызов сейчас - внедрение AI. Как-то так)
#microservices #ai #cloud #kafka #rest
Случайно наткнулся на старую статью - 2015 год - про переход с legacy на Service Oriented Architecture ака SOA.
И хочу сказать, что это хороший пример развития истории по спирали)
Что в статье актуально?
Заменяем слово SOA на микросервисы, и в целом все, что касается преимуществ микросервисной архитектуры и стратегии перехода на нее - актуально. Микросервисы = SOA 2.0 )))
REST оставляем, SOAP+XML заменяем на gRPC\GraphQL для тех случаев, когда требуется большая производительность и гибкость соответственно по сравнению с REST. К слову, недостаток производительности и гибкости - это основные проблемы SOAP. Ремарка - знаю места, где SOAP еще жив (интеграция с госорганами), но он в любом случае вымирает.
ESB, трудности реализации асинхронного взаимодействия - все эти задачи взяла на себя Kafka. Прорывной инструмент - быстрый, надежный (обеспечивает дешевую персистентность), opensource, простой с точки зрения разработчика. В т.ч. потому, что нет необходимости разрабатывать логику маппинга сообщений на брокере. Да, он реализует только одну из двух основных моделей асинхронного взаимодействия - Publisher-Subscriber - и не реализует Message Queue. Но понятно, что топиками можно пользоваться как заменой очередей, и в большинстве случаев проблем при этом не будет.
Облачные решения - за 10 лет из вызова превратились в новую реальность)
А вызов сейчас - внедрение AI. Как-то так)
#microservices #ai #cloud #kafka #rest