(java || kotlin) && devOps
363 subscribers
6 photos
1 video
7 files
339 links
Полезное про Java и Kotlin - фреймворки, паттерны, тесты, тонкости JVM. Немного архитектуры. И DevOps, куда без него
Download Telegram
UUID ключи в PostgreSQL

Я уже писал про версии UUID https://t.me/javaKotlinDevOps/264
Особенно интересной выглядит 7-я версия для использования в БД для построения индексов по двум причинам:
1) позволяет сортировать записи по времени создания
2) значение содержит метку времени, ее можно извлечь
Ну и эффект, наблюдаемый только в БД - записи ложатся последовательно в индексах и, соответственно, partition благодаря тому, что генерируются монотонно возрастающие значения.

Стандарт был принят в мае 2024 года https://datatracker.ietf.org/doc/rfc9562/

И не прошло и полгода (прошел год, но в мире БД это кажется даже быстро) и появляется PostgreSQL 18 c нативной поддержкой UUID v7 (функции uuidv7() и uuid_extract_timestamp) https://habr.com/ru/companies/spring_aio/articles/946168/

P.S. Если вчитаться в стандарт - попадаешь в кроличью нору:
1) для целей безопасности метка времени обрезается до миллисекунд
2) но чтобы получить возрастающие значения используется счетчик
3) счетчик инициализируется случайным числом, во избежание коллизий
4) есть защита от переполнения счетчика - допустимо использовать как счетчик ту часть метки времени, которую мы обнулили ранее, главное не перейти за границы миллисекунды. Если и этого не хватит - вопрос...
5) генератор должен хранить время t0, чтобы при переводе времени продолжать использовать исходное время и значения были уникальными и монотонно возрастающими
...

#postgresql #uuid
👀2
Небольшая заметка.

Мы обсуждаем, как хорошо AI пишет код. Но люди его используют совсем не для этого: https://t-j.ru/news/how-people-use-chatgpt

Это я, к тому, для каких задач его будут оптимизировать.

С другой стороны: да, 4% казалось бы немного. Но если сравнить с обычным поиском, то рост раза в 2. Точных цифр по доле запросов по разработке в поисковом трафике нет, но тот же ChatGPT дает неплохую оценку исходя из числа разработчиков и среднего числа их запросов в день.

#ai
Как быстрее погрузиться в код?

Речь про существующий микросервис и нового разработчика.
Я уже писал, что JavaDoc (KDoc) не является обязательным для каждого метода\поля или класса (как минимум для бизнес-приложения, общие библиотеки - особый кейс), т.к. документацию никто не читает.
А что же тогда будет документацией? Например, тесты. Их конечно тоже новичок не будет читать на 100%, но во-первых их и так нужно писать, а во-вторых - при рефакторинге падающий тест покажет, что забыли поправить, а в целом любой существующий тест изменяемого класса покажет, как он работает.

А недавно я нашел еще один полезный способ задокументировать микросервис так, чтобы этой "документацией" пользовались.
Начну немного издалека. Есть такая ИТ консалтинговая компания как Thoughtworks. Ну есть и есть, где мы и где консалтинг. Но там работает такой небезызвестный человек, как Мартин Фаулер. Главный научным руководителем https://www.thoughtworks.com/profiles/leaders/martin-fowler
А это внушает некий уровень доверия.
Так вот, компания ведет реестр технологий а-ля техрадар.
И в текущей его версии есть такая штука https://www.thoughtworks.com/en-de/radar/techniques/api-request-collection-as-api-product-artifact
как коллекция API запросов как артефакт продукта.
На самом деле мысль лежит на поверхности, я уже достаточно давно практикую прихранивание запросов в формате IDEA api collection вместе с исходниками в тех проектах, над которыми приходилось работать. Да, над форматом стоит подумать отдельно, возможно Insomnia будет по-универсальнее, зависит от команды и организации. Но сама идея мне очень нравится. Такой документацией точно будут пользоваться.

P.S. Кто ее должен делать - разработчики или тестировщики и нужно ли шарить коллекцию между ними - тоже вопрос для обсуждения. В идеале - думаю, что да.

P.P.S. Да, когда я говорю про артефакт продукта - это значит мало ее сделать, ее нужно поддерживать в актуальном состоянии.

#api #onbording #documentation
🔥1
Основные проблемы AI в разработке.

Я вижу две основные проблемы.

Первая - принципиально недетерминированный ответ как отражение вероятностной природы LLM. Если в креативных задачах это плюс, но в разработке скорее минус.

Вторая - естественный язык не самое лучшее API из-за своей неоднозначности.

И для второй, а частично и для первой проблемы есть решение - паттерн structured output. Суть проста - мы говорим модели, в каком виде хотели бы получить ответ. Это может быть JSON схема или класс Response. Базовый формат - JSON, но он на уровне библиотеки легко трансформируется в класс для большинства языков программирования. Ключевой момент - вызов модели должен вернуть правильный по структуре JSON с вероятностью 100%. И далее его можно или без лишних проверок парсить и передавать на вход следующему методу.

Реализован паттерн должен быть в самой модели, так как на уровне библиотеки или промта гарантии 100% соответствия получить нельзя.

Вот статья с примером использования:
https://habr.com/ru/articles/923096

P.S. Паттерны есть везде, коллекция AI паттернов постепенно растёт)

#ai #llm
RestTemplate is dead, baby)))

Spring наконец-то решили задепрекейтить RestTemplate.
Пруф: https://spring.io/blog/2025/09/30/the-state-of-http-clients-in-spring

Его замены в fluent стиле: RestClient для синхронного и WebCLient для асинхронного взаимодействия.
Видимо, команда Spring таки выпилила его из компонентов фреймворка и теперь предлагает это сделать всем остальным)

На самом деле я немного добавил сенсационности в пост.
А реальная хронология событий планируется такая:
- в ноябре этого года (Spring 7.0) будет объявлено о том, что компонент deprecated
- формально deprecated он станет в ноябре 2026 года (Spring 7.1)
- выпилят в Spring 8.0 где-то в 27 году.

Это мир Java == мир обратной совместимости)

#spring #web
👍2
Языки программирования общего назначения?

Java, Python, C, Go. Формально, технически - да, все это универсальные языки, которые можно применять в любой, задача. А фактически?

Говорим Python - подразумеваем Data Science, ML и AI.
Go захватил разработку крипты. Плюс операторы в k8s.
Kotlin - от 70 до 90% приложений в Google Play (топовых приложений если быть точным, т.к. есть "хвост" легаси)
Похожая картина у Swift - примерно 60% в iOS (доля бинпрников в iOS 17).
C# - нативные Windows приложения (Delphi и VB.NET эту битву проиграли).
Groovy нашел свою нишу в Jenkins как DSL (Gradle еще, но там его теснит Kotlin, да и не должны Gradle скрипты быть большими).
Lua - язык плагинов (Nginx, Tarantool) и скриптовый язык для игр. То бишь - король DSL.
Драйвера пишут на C (до сих пор ли? Раньше так было).

Да, экосистема (библиотеки, фреймворки, документация, сообщество) рулит)

И вопрос - что я забыл?

#lang
Небольшой забавный (и при этом грустный) факт о JVM.

Для запуска Hello world приложения на Java JVM загружает 450 классов.

Пруф: https://inside.java/2025/01/28/jvm-start-up/


#jvm #fun_facts
😱4
Если IDEA легла при старте. Или mini IDEA troobleshooting guide.

Что можно сделать?

Вариант номер ноль - обругать нехорошими словами разработчиков IDE и откатиться на предыдущую версию. Хотя, разработчики IDE могут быть не виноваты, о чем ниже)
Если вас этот вариант не устраивает - вот на что стоит обратить внимание.

Предусловие - надо вспомнить где у вас хранятся настройки IDEA. По умолчанию на примере Windows это %USERDATA%\AppData\Local\xxx\yyy, xxx - это JetBrains\GIGAIDE\..., а yyy - имя IDE.
Но через idea.properties это место можно переопределить.

И так.
1) Логи. По умолчанию лежат в %USERDATA%\AppData\Local\xxx\yyy\log\idea.log
В логах стоит обратить внимание на исключения. Как ни странно, искать их надо по SEVERE, а не ERROR
Возможно из исключения будет сразу понятна причина.

2) Плагины. Часто в исключении есть какие-то классы, но за что они отвечают - не ясно. Но если перед исключением есть строчка
Plugin to blame: xxx,
то предполагаемый виновник найден.
Очень часто это новый плагин или его новая версия.
Его надо отключить. Но IDE не стартует, и настройки в UI недоступны.
Не беда - внешние плагины можно отключить удалив соответствующую папку из %USERDATA%\AppData\Roaming\xxx\yyy\plugins.
Бывают сбои и во встроенных (bundled) плагинах, поэтому есть второй способ: добавить id плагина в файл %USERDATA%\AppData\Roaming\xxx\yyy\disabled_plugins.txt
Важно - id, а не имя. id это по сути grouId артифакта, найти его можно в логе.

3) Текущий проект. У меня были кейсы, когда даже с плагином с утечкой памяти, сжирающим 6, 8, 16 Гб - т.е. все что дадут - удавалось запустить IDE открыв пустой проект. Но IDEA по умолчанию открывает последние проекты. Вариант решения - переименовать папку, чтобы она их не нашла.

4) Опции запуска. https://www.jetbrains.com/help/idea/working-with-the-ide-features-from-command-line.html#arguments
Могут помочь решить проблему следующие:
а) disableNonBundledPlugins - запуск IDE без внешних плагинов
б) dontReopenProjects - более элегантный вариант открыть IDEA без последних проектов

5) Память. Если в логах есть OutOfMemoryError - можно попробовать увеличить Heap для IDEA. Почему можно попробовать - потому что это не панацея, при утечке памяти не поможет.
Второй вопрос - как увеличить? Через idea64.exe.vmoptions.
А если не хватает прав его поправить?
Есть его "профильный" (лежащий в профиле пользователя) двойник %USERDATA%\AppData\Roaming\xxx\yyy\idea64.exe.vmoptions.
Рекомендую использовать его, особенно если у вас настройки IDEA в кастомной папке, не меняющейся от версии к версии.

6) thread dump и heap dump. Больше помогут разрабам IDE, но глянуть можно.
Создаются в двух случаях.
а) При каждом зависании (freeze) создаются в %USERDATA%\AppData\Local\xxx\yyy\log\threadDumps-freeze-zzz
б) при OutOfMemory с включенной опцией -XX:+HeapDumpOnOutOfMemoryError (а в idea64.exe.vmoptions она по умолчанию есть) в %USERDATA% создается heapdump и лог, включающий threaddumps

На сегодня все, если найду еще интересные лайфхаки - сделаю новый пост.

#idea #ide #troubleshooting
👍2
Минутка философии на канале)
На тему AI конечно же)

Вопрос - не является ли массовое внедрение AI сейчас (причем со словами везде и надо еще вчера) временным хайпом?

Ответ - даже если и является, очень может быть, что является, AI из разработки уже не уйдет. Как не ушли Agile, DevOps, микросервисы.

Почему - потому что уже на текущем уровне инструмент позволяет автоматизировать рутину малой кровью. Не все модели, не любые задачи - но рабочие кейсы есть. Описание чужого кода, типовой код (маппинг), каркас приложения, базовый набор тестов, замена поиска... И их будет больше.

Вывод - изучать надо)

#ai
👍3💯2
Новая LTS Java.

Я о Java 25.
Вышла не вчера, поэтому также вышла и хорошая статья с обзором нововведений https://habr.com/ru/companies/T1Holding/articles/946778/.
Там даже табличка включения новых фич от 21 до 25 версии есть. И примеры кода - было\стало.
И от меня как всегда пару комментариев)

Для начала бросаются в глаза две фичи со "странным" названием Quantum-Resistant ...
Почему бросаются - квантовые компьютеры ожидаются в промышленном использовании в течение 10+ лет, а устойчивые к взлому квантовым компьютером алгоритмы в Java появились уже сейчас.
С - стратегия.
Б - банковское ПО)

Три фичи со словами Ahead-of-Time, главная из них - Ahead-of-Time Class Loading & Linking.
Это дальнейшее развитие темы CDS https://t.me/javaKotlinDevOps/316
Т.е. ускорение старта приложения.
Если CDS убирает этап верификации классов сохраняя в архиве уже проверенные классы,
то Ahead-of-Time Class Loading & Linking как следует из названия сохраняет всю необходимую для работы с классами информацию. Так сказать в распакованном виде, поэтому ее сразу можно грузить в Metaspace.
Одно но: набор классов у всех разный, поэтому нужно запустить приложение в тестовом режиме и собрать данные по актуальным классам, которые и будут сохранены в архиве.
Заодно сохраняется и статистика их использования (Ahead-of-Time Method Profiling), что позволяет при старте JVM сразу запустить компиляцию часто используемых методов.
Последняя фича - это offline Profile-Guided Optimization https://t.me/javaKotlinDevOps/315, которая ранее была killer feature коммерческих JVM: Azul ReadyNow и GraalVM Enterprise Native Image.
Итоговое ускорение загрузки: 42% vs 33% у CDS https://www.happycoders.eu/java/ahead-of-time-class-loading-and-linking/

Есть еще две оптимизационные фичи: Compact Object Headers и Linking Run-Time Images without JMODs.
Первая уменьшает размер любого объекта в памяти, оптимизируя заголовки. Вторая - уменьшает объем JDK, убирая оттуда JMOD файлы. JMOD появились вместе с модулями Java как развитие jar.
И классы в jmod файлах уже есть в JDK, т.е. имеем дублирование. Сейчас его убрали, размер JDK стал меньше на 25%. Важно в облаках с тысячами микросервисов.

На самом деле технология модулей в Java до сих пор не прижилась в коммерческой разработке, но команда Java не сдается)
Module Import Declarations - можно разом импортировать все классы в модуле. С одной стороны загрязняется область видимости, с другой - удобно.

Markdown Documentation Comments: Markdown - стандарт документации в ИТ в целом, получаем больше возможностей в JavaDoc. Да, JavaDoc нужны не всегда, но пригодится.

Фичи с JFR в названии - допилен профайлер: меньше влияние на исполнение кода (JFR Cooperative Sampling), больше данных (JFR Method Timing & Tracing).

Unnamed Variables & Patterns: _ (подчеркивание) обозначает для компилятора и валидаторов неиспользуемую переменную. Java пополнила длинный список языков, где это уже есть)

Scoped Values - более безопасный вариант Thread Local.

Также дошли до prod ready версии фичи из моего поста про Java 22 https://t.me/javaKotlinDevOps/278
* Launch Multi-File Source-Code Programs
* Implicitly Declared Classes and Instance Main Methods
* Stream Gatherers
* Class-File API
* Statements before super

Итого - решаются проблемы с производительностью и объемом, допиливается функционал (стримы, модули, JFR, Thread Local, GC), стандартизируются API (Class-File API), немного синтаксического сахара (_).

А String templates https://t.me/javaKotlinDevOps/246 выкинули. Слишком отличается от мэйнстрима, я про идею процессора STR."xxx", обрабатывающего строки

#java #jdk #java_new_version
Серия: "Хозяйке на заметку" про PostgreSQL.
А точнее про создание индексов.

CREATE INDEX table_idx ON books (title) 


Вроде все просто.

Но есть ряд интересных опций.
1) CONCURRENTLY
Получается так:
CREATE INDEX CONCURRENTLY table_idx ON books (title)  

Когда нужно - всегда если накат идет на активное плечо ПРОМа. Опция не блокирует изменение таблицы пользователя. Минусы: команда выполняется дольше.

2) INCLUDE
Известно, что чтение значения индекса работает быстрее, т.к. это значение хранится в индексе, не нужно ходить в таблицу. Но кроме того в индекс можно положить любые другие значения из записи таблицы. Можно, но осторожно, т.к. это в любом случае дублирование данных. Эффект надо подтверждать на НТ.
Получаем:
CREATE INDEX table_idx ON books (title) INCLUDE (isbn)


3) WHERE
Позволяет поместить в индекс не все значения столбца, имеющиеся в таблице.
Решает следующие кейсы:
а) низкая селективность индекса: выбирает только значения с высокой селективностью
б) экономия места в памяти (и возможно в каких-то случаях на диске): выбираем в индекс только необходимое
в) частичная уникальность: если нужен уникальный индекс, но он соблюдается не для всех значений.
Выглядит так:
CREATE INDEX table_idx ON books (title) WHERE country = 'Russia'


P.S. Еще есть интересная опция USING, позволяющая использовать разные типы индексов (по умолчанию в PostgreSQL используется btree), но это отдельная тема)

Детали в официальной документации https://www.postgresql.org/docs/current/sql-createindex.html

#postgresql #db #performance
4