https://whatsapp.com/channel/0029VaQGPfv5fM5iSUtwYM0X
Join my whatsapp channel by clicking on the link
Join my whatsapp channel by clicking on the link
WhatsApp.com
Geeky Codes | WhatsApp Channel
Geeky Codes WhatsApp Channel. Hi All
Welcome to GeekyCodes. Join our channel for latest Programming Blogs,Job Openings at various organizations and machine learning blogs.
In case you've any doubt regarding ML/Data Science please reach out to me @ved1104…
Welcome to GeekyCodes. Join our channel for latest Programming Blogs,Job Openings at various organizations and machine learning blogs.
In case you've any doubt regarding ML/Data Science please reach out to me @ved1104…
https://youtube.com/@geekycodesin?si=JzJo3WS5E_VFmD1k
Subscribe to our channel and share it with your friends
Subscribe to our channel and share it with your friends
The only 15 Python Pandas operations you need to remember:
Remembering all the Pandas operations is hard.
Remembering just a handful of them can do the trick if we want to work faster.
1. df.info() # Prints information about the DataFrame
2. df.describe() # Generates state of the columns
3. df.head() # Prints first (n) rows of the DataFrame
4. df.apply() # Applies functions on columns
5. df.groupby() # Applies aggregation of a column
6. df.sort_values() # Sorts tables
7. df.sample() # Sample data
8. pd.read_filetype(filename) # Imports from a filetype
9. df.to_filetype(filename) # Exports to a filetype
10. df.plot() # Generates plot
11. pd.to_datetime # Converts object to a datetime column
11. df.filter() # Filter on columns
12. df.drop() # Drops rows based on a condition
13. df.rank() # Generates ranks on a column
14. df1.append(df2) # Adds the rows in df1 to the df2
15. pd.isnull() # Checks the null values
Remembering all the Pandas operations is hard.
Remembering just a handful of them can do the trick if we want to work faster.
1. df.info() # Prints information about the DataFrame
2. df.describe() # Generates state of the columns
3. df.head() # Prints first (n) rows of the DataFrame
4. df.apply() # Applies functions on columns
5. df.groupby() # Applies aggregation of a column
6. df.sort_values() # Sorts tables
7. df.sample() # Sample data
8. pd.read_filetype(filename) # Imports from a filetype
9. df.to_filetype(filename) # Exports to a filetype
10. df.plot() # Generates plot
11. pd.to_datetime # Converts object to a datetime column
11. df.filter() # Filter on columns
12. df.drop() # Drops rows based on a condition
13. df.rank() # Generates ranks on a column
14. df1.append(df2) # Adds the rows in df1 to the df2
15. pd.isnull() # Checks the null values
https://geekycodes.in/managing-data-from-relational-databases-using-python/
Managing Data from Relational Databases using Python
Managing Data from Relational Databases using Python
Geeky Codes
Managing Data from Relational Databases using Python
Databases come in all sorts of forms. For example, AskSam (http://asksam.en.softonic.com/) is a kind of free-form textual database. However,