ISO/OSI MODEL ?
According to the pure doctrine the ISO/OSI layer model, technically separates a computer network into seven layers.
Each layer has a clearly defined task and each packet passes them one after another in
the operating systems kernel up to the layer it’s operating on.
~ @geekcode
According to the pure doctrine the ISO/OSI layer model, technically separates a computer network into seven layers.
Each layer has a clearly defined task and each packet passes them one after another in
the operating systems kernel up to the layer it’s operating on.
~ @geekcode
What is Protocol?
A protocol is a set of rules and standards that basically define a language that devices can use to communicate. There are a great number of protocols in use extensively in networking, and they are often implemented in different layers.
Some low level protocols are TCP, UDP, IP, and ICMP. Some examples of application layer protocols, built on these lower protocols, are HTTP (for accessing web content), SSH, TLS/SSL, and FTP.
~ @geekcode
A protocol is a set of rules and standards that basically define a language that devices can use to communicate. There are a great number of protocols in use extensively in networking, and they are often implemented in different layers.
Some low level protocols are TCP, UDP, IP, and ICMP. Some examples of application layer protocols, built on these lower protocols, are HTTP (for accessing web content), SSH, TLS/SSL, and FTP.
~ @geekcode
What is Firewall?
A firewall is a program that decides whether traffic coming into a server or going out should be allowed. A firewall usually works by creating rules for which type of traffic is acceptable on which ports. Generally, firewalls block ports that are not used by a specific application on a server.
~ @geekcode
A firewall is a program that decides whether traffic coming into a server or going out should be allowed. A firewall usually works by creating rules for which type of traffic is acceptable on which ports. Generally, firewalls block ports that are not used by a specific application on a server.
~ @geekcode
What is NAT?
NAT stands for network address translation. It is a way to translate requests that are incoming into a routing server to the relevant devices or servers that it knows about in the LAN. This is usually implemented in physical LANs as a way to route requests through one IP address to the necessary backend servers.
~ @geekcode
NAT stands for network address translation. It is a way to translate requests that are incoming into a routing server to the relevant devices or servers that it knows about in the LAN. This is usually implemented in physical LANs as a way to route requests through one IP address to the necessary backend servers.
~ @geekcode
Why use packets?
it could be possible to send files and data over the Internet without chopping them down into small packets of information. One computer could send data to another computer in the form of a long unbroken line of bits (small units of information, communicated as pulses of electricity that computers can interpret).
However, such an approach quickly becomes impractical when more than two computers are involved. While the long line of bits passed over the wires between the two computers, no third computer could use those same wires to send information — it would have to wait its turn.
In contrast to this approach, the Internet is a "packet switching" network. Packet switching refers to the ability of networking equipment to process packets independently from each other. It also means that packets can take different network paths to the same destination, so long as they all arrive at the destination. (In certain protocols, packets do need to arrive at their final destinations in the correct order, even if each packet took a different route to get there.)
Because of packet switching, packets from multiple computers can travel over the same wires in basically any order. This enables multiple connections to take place over the same networking equipment at the same time. As a result, billions of devices can exchange data on the Internet at the same time, instead of just a handful.
~ @geekcode
it could be possible to send files and data over the Internet without chopping them down into small packets of information. One computer could send data to another computer in the form of a long unbroken line of bits (small units of information, communicated as pulses of electricity that computers can interpret).
However, such an approach quickly becomes impractical when more than two computers are involved. While the long line of bits passed over the wires between the two computers, no third computer could use those same wires to send information — it would have to wait its turn.
In contrast to this approach, the Internet is a "packet switching" network. Packet switching refers to the ability of networking equipment to process packets independently from each other. It also means that packets can take different network paths to the same destination, so long as they all arrive at the destination. (In certain protocols, packets do need to arrive at their final destinations in the correct order, even if each packet took a different route to get there.)
Because of packet switching, packets from multiple computers can travel over the same wires in basically any order. This enables multiple connections to take place over the same networking equipment at the same time. As a result, billions of devices can exchange data on the Internet at the same time, instead of just a handful.
~ @geekcode
WHAT IS VLAN?
VLAN (Virtual Local Area Network) separates several networks on a logical base. Only devices on the same VLAN can see each other. VLANs where invented to define a networks structure
independently from its physical hardware, to prioritize connections and to minimize broadcast traffic. They were not developed with security in mind, but its a common myth that VLANs can add to your security. Don’t rely on this myth, because several ways exist to
circumvent the separation of a VLAN.
~ @geekcode
VLAN (Virtual Local Area Network) separates several networks on a logical base. Only devices on the same VLAN can see each other. VLANs where invented to define a networks structure
independently from its physical hardware, to prioritize connections and to minimize broadcast traffic. They were not developed with security in mind, but its a common myth that VLANs can add to your security. Don’t rely on this myth, because several ways exist to
circumvent the separation of a VLAN.
~ @geekcode