Editorial: Computational methods for neuroimaging: Challenges and future trends
No abstract
Read more...
No abstract
Read more...
An initial prediction and fine-tuning model based on improving GCN for 3D human motion prediction
Human motion prediction is one of the fundamental studies of computer vision. Much work based on deep learning has shown impressive performance for it in recent years. However, long-term prediction and human skeletal deformation are still challenging tasks for human motion prediction. For accurate prediction, this paper proposes a GCN-based two-stage prediction method. We train a prediction model in the first stage. Using multiple cascaded spatial attention graph convolution layers (SAGCL) to...
Read more...
Human motion prediction is one of the fundamental studies of computer vision. Much work based on deep learning has shown impressive performance for it in recent years. However, long-term prediction and human skeletal deformation are still challenging tasks for human motion prediction. For accurate prediction, this paper proposes a GCN-based two-stage prediction method. We train a prediction model in the first stage. Using multiple cascaded spatial attention graph convolution layers (SAGCL) to...
Read more...
Spike timing-dependent plasticity under imbalanced excitation and inhibition reduces the complexity of neural activity
Excitatory and inhibitory neurons are fundamental components of the brain, and healthy neural circuits are well balanced between excitation and inhibition (E/I balance). However, it is not clear how an E/I imbalance affects the self-organization of the network structure and function in general. In this study, we examined how locally altered E/I balance affects neural dynamics such as the connectivity by activity-dependent formation, the complexity (multiscale entropy) of neural activity, and...
Read more...
Excitatory and inhibitory neurons are fundamental components of the brain, and healthy neural circuits are well balanced between excitation and inhibition (E/I balance). However, it is not clear how an E/I imbalance affects the self-organization of the network structure and function in general. In this study, we examined how locally altered E/I balance affects neural dynamics such as the connectivity by activity-dependent formation, the complexity (multiscale entropy) of neural activity, and...
Read more...
Dynamics of a model for the degradation mechanism of aggregated α-synuclein in Parkinson's disease
Accumulation of the misfolded synaptic protein α-synuclein (αSyn^(*)) is a hallmark of neurodegenerative disease in Parkinson's disease (PD). Recent studies suggest that the autophagy lysosome pathway (ALP) including both the Beclin1-associated and mTOR-signaling pathways is involved in the αSyn^(*) clearance mechanism. In this study, a mathematical model is proposed for the degradation of αSyn^(*) by ALP with the crosstalk element of mTOR. Using codimension-1 bifurcation analysis, the...
Read more...
Accumulation of the misfolded synaptic protein α-synuclein (αSyn^(*)) is a hallmark of neurodegenerative disease in Parkinson's disease (PD). Recent studies suggest that the autophagy lysosome pathway (ALP) including both the Beclin1-associated and mTOR-signaling pathways is involved in the αSyn^(*) clearance mechanism. In this study, a mathematical model is proposed for the degradation of αSyn^(*) by ALP with the crosstalk element of mTOR. Using codimension-1 bifurcation analysis, the...
Read more...
neuroAIx-Framework: design of future neuroscience simulation systems exhibiting execution of the cortical microcircuit model 20× faster than biological real-time
INTRODUCTION: Research in the field of computational neuroscience relies on highly capable simulation platforms. With real-time capabilities surpassed for established models like the cortical microcircuit, it is time to conceive next-generation systems: neuroscience simulators providing significant acceleration, even for larger networks with natural density, biologically plausible multi-compartment models and the modeling of long-term and structural plasticity.
Read more...
INTRODUCTION: Research in the field of computational neuroscience relies on highly capable simulation platforms. With real-time capabilities surpassed for established models like the cortical microcircuit, it is time to conceive next-generation systems: neuroscience simulators providing significant acceleration, even for larger networks with natural density, biologically plausible multi-compartment models and the modeling of long-term and structural plasticity.
Read more...
Automated detection of myopic maculopathy using five-category models based on vision outlooker for visual recognition
CONCLUSION: The VOLO-D2 model accurately identified myopia-free macular lesions and four pathological myopia-related macular lesions with high sensitivity and specificity. It can be used in screening pathological myopic macular lesions and can help ophthalmologists and primary medical institution providers complete the initial screening diagnosis of patients.
Read more...
CONCLUSION: The VOLO-D2 model accurately identified myopia-free macular lesions and four pathological myopia-related macular lesions with high sensitivity and specificity. It can be used in screening pathological myopic macular lesions and can help ophthalmologists and primary medical institution providers complete the initial screening diagnosis of patients.
Read more...
Stability of mental motor-imagery classification in EEG depends on the choice of classifier model and experiment design, but not on signal preprocessing
INTRODUCTION: Modern consciousness research has developed diagnostic tests to improve the diagnostic accuracy of different states of consciousness via electroencephalography (EEG)-based mental motor imagery (MI), which is still challenging and lacks a consensus on how to best analyse MI EEG-data. An optimally designed and analyzed paradigm must detect command-following in all healthy individuals, before it can be applied in patients, e.g., for the diagnosis of disorders of consciousness (DOC).
Read more...
INTRODUCTION: Modern consciousness research has developed diagnostic tests to improve the diagnostic accuracy of different states of consciousness via electroencephalography (EEG)-based mental motor imagery (MI), which is still challenging and lacks a consensus on how to best analyse MI EEG-data. An optimally designed and analyzed paradigm must detect command-following in all healthy individuals, before it can be applied in patients, e.g., for the diagnosis of disorders of consciousness (DOC).
Read more...
An information theoretic score for learning hierarchical concepts
How do humans learn the regularities of their complex noisy world in a robust manner? There is ample evidence that much of this learning and development occurs in an unsupervised fashion via interactions with the environment. Both the structure of the world as well as the brain appear hierarchical in a number of ways, and structured hierarchical representations offer potential benefits for efficient learning and organization of knowledge, such as concepts (patterns) sharing parts (subpatterns),...
Read more...
How do humans learn the regularities of their complex noisy world in a robust manner? There is ample evidence that much of this learning and development occurs in an unsupervised fashion via interactions with the environment. Both the structure of the world as well as the brain appear hierarchical in a number of ways, and structured hierarchical representations offer potential benefits for efficient learning and organization of knowledge, such as concepts (patterns) sharing parts (subpatterns),...
Read more...
Patient-specific approach using data fusion and adversarial training for epileptic seizure prediction
Epilepsy is the second common neurological disorder after headache, accurate and reliable prediction of seizures is of great clinical value. Most epileptic seizure prediction methods consider only the EEG signal or extract and classify the features of EEG and ECG signals separately, the improvement of prediction performance from multimodal data is not fully considered. In addition, epilepsy data are time-varying, with differences between each episode in a patient, making it difficult for...
Read more...
Epilepsy is the second common neurological disorder after headache, accurate and reliable prediction of seizures is of great clinical value. Most epileptic seizure prediction methods consider only the EEG signal or extract and classify the features of EEG and ECG signals separately, the improvement of prediction performance from multimodal data is not fully considered. In addition, epilepsy data are time-varying, with differences between each episode in a patient, making it difficult for...
Read more...
Time as a supervisor: temporal regularity and auditory object learning
Sensory systems appear to learn to transform incoming sensory information into perceptual representations, or "objects," that can inform and guide behavior with minimal explicit supervision. Here, we propose that the auditory system can achieve this goal by using time as a supervisor, i.e., by learning features of a stimulus that are temporally regular. We will show that this procedure generates a feature space sufficient to support fundamental computations of auditory perception. In detail, we...
Read more...
Sensory systems appear to learn to transform incoming sensory information into perceptual representations, or "objects," that can inform and guide behavior with minimal explicit supervision. Here, we propose that the auditory system can achieve this goal by using time as a supervisor, i.e., by learning features of a stimulus that are temporally regular. We will show that this procedure generates a feature space sufficient to support fundamental computations of auditory perception. In detail, we...
Read more...
Empirically validated theoretical analysis of visual-spatial perception under change of nervous system arousal
CONCLUSION: We developed a computational model of visuospatial perceptual alterations under altered neural sympathetic/parasympathetic tone. We validated our model using analysis of behavioral studies, neuroimaging assessment, and neurocomputational evaluation. Our quantitative approach may be probed as a potential behavioral screening and monitoring methodology in neuropsychology to analyze perceptual misjudgment and mishaps by highly stressed workers.
Read more...
CONCLUSION: We developed a computational model of visuospatial perceptual alterations under altered neural sympathetic/parasympathetic tone. We validated our model using analysis of behavioral studies, neuroimaging assessment, and neurocomputational evaluation. Our quantitative approach may be probed as a potential behavioral screening and monitoring methodology in neuropsychology to analyze perceptual misjudgment and mishaps by highly stressed workers.
Read more...
The mesoanatomy of the cortex, minimization of free energy, and generative cognition
Capacity for generativity and unlimited association is the defining characteristic of sentience, and this capacity somehow arises from neuronal self-organization in the cortex. We have previously argued that, consistent with the free energy principle, cortical development is driven by synaptic and cellular selection maximizing synchrony, with effects manifesting in a wide range of features of mesoscopic cortical anatomy. Here, we further argue that in the postnatal stage, as more structured...
Read more...
Capacity for generativity and unlimited association is the defining characteristic of sentience, and this capacity somehow arises from neuronal self-organization in the cortex. We have previously argued that, consistent with the free energy principle, cortical development is driven by synaptic and cellular selection maximizing synchrony, with effects manifesting in a wide range of features of mesoscopic cortical anatomy. Here, we further argue that in the postnatal stage, as more structured...
Read more...
The influence of non-stationarity of spike signals on decoding performance in intracortical brain-computer interface: a simulation study
INTRODUCTION: Intracortical Brain-Computer Interfaces (iBCI) establish a new pathway to restore motor functions in individuals with paralysis by interfacing directly with the brain to translate movement intention into action. However, the development of iBCI applications is hindered by the non-stationarity of neural signals induced by the recording degradation and neuronal property variance. Many iBCI decoders were developed to overcome this non-stationarity, but its effect on decoding...
Read more...
INTRODUCTION: Intracortical Brain-Computer Interfaces (iBCI) establish a new pathway to restore motor functions in individuals with paralysis by interfacing directly with the brain to translate movement intention into action. However, the development of iBCI applications is hindered by the non-stationarity of neural signals induced by the recording degradation and neuronal property variance. Many iBCI decoders were developed to overcome this non-stationarity, but its effect on decoding...
Read more...
Retraction: Deep learning for autism diagnosis and facial analysis in children
This retracts the article DOI: 10.3389/fncom.2021.789998..
Read more...
This retracts the article DOI: 10.3389/fncom.2021.789998..
Read more...
Editorial: The embodied brain: computational mechanisms of integrated sensorimotor interactions with a dynamic environment, volume II
No abstract
Read more...
No abstract
Read more...
Dynamic models for musical rhythm perception and coordination
Rhythmicity permeates large parts of human experience. Humans generate various motor and brain rhythms spanning a range of frequencies. We also experience and synchronize to externally imposed rhythmicity, for example from music and song or from the 24-h light-dark cycles of the sun. In the context of music, humans have the ability to perceive, generate, and anticipate rhythmic structures, for example, "the beat." Experimental and behavioral studies offer clues about the biophysical and neural...
Read more...
Rhythmicity permeates large parts of human experience. Humans generate various motor and brain rhythms spanning a range of frequencies. We also experience and synchronize to externally imposed rhythmicity, for example from music and song or from the 24-h light-dark cycles of the sun. In the context of music, humans have the ability to perceive, generate, and anticipate rhythmic structures, for example, "the beat." Experimental and behavioral studies offer clues about the biophysical and neural...
Read more...
Predicting the distribution of serotonergic axons: a supercomputing simulation of reflected fractional Brownian motion in a 3D-mouse brain model
The self-organization of the brain matrix of serotonergic axons (fibers) remains an unsolved problem in neuroscience. The regional densities of this matrix have major implications for neuroplasticity, tissue regeneration, and the understanding of mental disorders, but the trajectories of its fibers are strongly stochastic and require novel conceptual and analytical approaches. In a major extension to our previous studies, we used a supercomputing simulation to model around one thousand...
Read more...
The self-organization of the brain matrix of serotonergic axons (fibers) remains an unsolved problem in neuroscience. The regional densities of this matrix have major implications for neuroplasticity, tissue regeneration, and the understanding of mental disorders, but the trajectories of its fibers are strongly stochastic and require novel conceptual and analytical approaches. In a major extension to our previous studies, we used a supercomputing simulation to model around one thousand...
Read more...
Can neuron modeling constrained by ultrafast imaging data extract the native function of ion channels?
No abstract
Read more...
No abstract
Read more...
Learning cortical hierarchies with temporal Hebbian updates
A key driver of mammalian intelligence is the ability to represent incoming sensory information across multiple abstraction levels. For example, in the visual ventral stream, incoming signals are first represented as low-level edge filters and then transformed into high-level object representations. Similar hierarchical structures routinely emerge in artificial neural networks (ANNs) trained for object recognition tasks, suggesting that similar structures may underlie biological neural networks....
Read more...
A key driver of mammalian intelligence is the ability to represent incoming sensory information across multiple abstraction levels. For example, in the visual ventral stream, incoming signals are first represented as low-level edge filters and then transformed into high-level object representations. Similar hierarchical structures routinely emerge in artificial neural networks (ANNs) trained for object recognition tasks, suggesting that similar structures may underlie biological neural networks....
Read more...
Prestimulus α/β power in temporal-order judgments: individuals differ in direction of modulation but show consistency over auditory and visual tasks
The processing of incoming sensory information can be differentially affected by varying levels of α-power in the electroencephalogram (EEG). A prominent hypothesis is that relatively low prestimulus α-power is associated with improved perceptual performance. However, there are studies in the literature that do not fit easily into this picture, and the reasons for this are poorly understood and rarely discussed. To evaluate the robustness of previous findings and to better understand the overall...
Read more...
The processing of incoming sensory information can be differentially affected by varying levels of α-power in the electroencephalogram (EEG). A prominent hypothesis is that relatively low prestimulus α-power is associated with improved perceptual performance. However, there are studies in the literature that do not fit easily into this picture, and the reasons for this are poorly understood and rarely discussed. To evaluate the robustness of previous findings and to better understand the overall...
Read more...