Frontiers in Computational Neuroscience
68 subscribers
401 photos
401 links
Download Telegram
Containment control of multiple unmanned surface vessels with NN control via reconfigurable hierarchical topology

This paper investigates the containment control of multiple unmanned surface vessels with nonlinear dynamics. To solve the leader-follower synchronization problem in a containment control system, a hierarchical control framework with a topology reconfiguration mechanism is proposed, and the process of containment control is converted into the tracking of a reference signal for each vessel on its respective target heading by means of the light-of-sight (LOS) guidance. In a control system, the...
Read more...
Clustering and disease subtyping in Neuroscience, toward better methodological adaptations

No abstract
Read more...
Atypical development of causal inference in autism inferred through a neurocomputational model

In everyday life, the brain processes a multitude of stimuli from the surrounding environment, requiring the integration of information from different sensory modalities to form a coherent perception. This process, known as multisensory integration, enhances the brain's response to redundant congruent sensory cues. However, it is equally important for the brain to segregate sensory inputs from distinct events, to interact with and correctly perceive the multisensory environment. This problem the...
Read more...
Modelling decision-making biases

Biases are a fundamental aspect of everyday life decision-making. A variety of modelling approaches have been suggested to capture decision-making biases. Statistical models are a means to describe the data, but the results are usually interpreted according to a verbal theory. This can lead to an ambiguous interpretation of the data. Mathematical cognitive models of decision-making outline the structure of the decision process with formal assumptions, providing advantages in terms of prediction,...
Read more...
Lightweight semantic segmentation network with configurable context and small object attention

The current semantic segmentation algorithms suffer from encoding feature distortion and small object feature loss. Context information exchange can effectively address the feature distortion problem, but it has the issue of fixed spatial range. Maintaining the input feature resolution can reduce the loss of small object information but would slow down the network's operation speed. To tackle these problems, we propose a lightweight semantic segmentation network with configurable context and...
Read more...
Spatial frequency channels depend on stimulus bandwidth in normal and amblyopic vision: an exploratory factor analysis

The Contrast Sensitivity Function (CSF) is the measure of an observer's contrast sensitivity as a function of spatial frequency. It is a sensitive measure to assess visual function in fundamental and clinical settings. Human contrast sensitivity is subserved by different spatial frequency channels. Also, it is known that amblyopes have deficits in contrast sensitivity, particularly at high spatial frequencies. Therefore, the aim of this study was to assess whether the contrast sensitivity...
Read more...
Short-term postsynaptic plasticity facilitates predictive tracking in continuous attractors

CONCLUSION: The incorporation of STPP into a CANN model highlights its influence on the mobility and predictive capabilities of neural networks. These findings contribute to our knowledge of STPP-based mechanisms and their potential applications in developing computational algorithms for sensory prediction.
Read more...
Fusing the spatial structure of electroencephalogram channels can increase the individualization of the functional connectivity network

An electroencephalogram (EEG) functional connectivity (FC) network is individualized and plays a significant role in EEG-based person identification. Traditional FC networks are constructed by statistical dependence and correlation between EEG channels, without considering the spatial relationships between the channels. The individual identification algorithm based on traditional FC networks is sensitive to the integrity of channels and crucially relies on signal preprocessing; therefore,...
Read more...
Editorial: Complex network dynamics in consciousness

No abstract
Read more...
Corrigendum: Riemannian geometry-based metrics to measure and reinforce user performance changes during brain-computer interface user training

This corrects the article DOI: 10.3389/fncom.2023.1108889..
Read more...
Epileptic focus localization using transfer learning on multi-modal EEG

The standard treatments for epilepsy are drug therapy and surgical resection. However, around 1/3 of patients with intractable epilepsy are drug-resistant, requiring surgical resection of the epileptic focus. To address the issue of drug-resistant epileptic focus localization, we have proposed a transfer learning method on multi-modal EEG (iEEG and sEEG). A 10-fold cross-validation approach was applied to validate the performance of the pre-trained model on the Bern-Barcelona and Bonn datasets,...
Read more...
Consciousness, 4E cognition and Aristotle: a few conceptual and historical aspects

The new approach in cognitive science largely known as "4E cognition" (embodied/embedded/enactive/extended cognition), which sheds new light on the complex dynamics of human consciousness, seems to revive some of Aristotle's views. For instance, the concept of "nature" (phusis) and the discussion on "active intellect" (nous poiêtikos) may be particularly relevant in this respect. Out of the various definitions of "nature" in Aristotle's Physics, On the Parts of Animals and Second Analytics, I...
Read more...
Bio-inspired circular latent spaces to estimate objects' rotations

This paper proposes a neural network model that estimates the rotation angle of unknown objects from RGB images using an approach inspired by biological neural circuits. The proposed model embeds the understanding of rotational transformations into its architecture, in a way inspired by how rotation is represented in the ellipsoid body of Drosophila. To effectively capture the cyclic nature of rotation, the network's latent space is structured in a circular manner. The rotation operator acts as...
Read more...
Cellular computation and cognition

Contemporary neural network models often overlook a central biological fact about neural processing: that single neurons are themselves complex, semi-autonomous computing systems. Both the information processing and information storage abilities of actual biological neurons vastly exceed the simple weighted sum of synaptic inputs computed by the "units" in standard neural network models. Neurons are eukaryotic cells that store information not only in synapses, but also in their dendritic...
Read more...
Enhanced representation learning with temporal coding in sparsely spiking neural networks

Current representation learning methods in Spiking Neural Networks (SNNs) rely on rate-based encoding, resulting in high spike counts, increased energy consumption, and slower information transmission. In contrast, our proposed method, Weight-Temporally Coded Representation Learning (W-TCRL), utilizes temporally coded inputs, leading to lower spike counts and improved efficiency. To address the challenge of extracting representations from a temporal code with low reconstruction error, we...
Read more...
LGNN: a novel linear graph neural network algorithm

The emergence of deep learning has not only brought great changes in the field of image recognition, but also achieved excellent node classification performance in graph neural networks. However, the existing graph neural network framework often uses methods based on spatial domain or spectral domain to capture network structure features. This process captures the local structural characteristics of graph data, and the convolution process has a large amount of calculation. It is necessary to use...
Read more...
Simulation of neuroplasticity in a CNN-based <em>in-silico</em> model of neurodegeneration of the visual system

The aim of this work was to enhance the biological feasibility of a deep convolutional neural network-based in-silico model of neurodegeneration of the visual system by equipping it with a mechanism to simulate neuroplasticity. Therefore, deep convolutional networks of multiple sizes were trained for object recognition tasks and progressively lesioned to simulate neurodegeneration of the visual cortex. More specifically, the injured parts of the network remained injured while we investigated how...
Read more...
A combination network of CNN and transformer for interference identification

Communication interference identification is critical in electronic countermeasures. However, existed methods based on deep learning, such as convolutional neural networks (CNNs) and transformer, seldom take both local characteristics and global feature information of the signal into account. Motivated by the local convolution property of CNNs and the attention mechanism of transformer, we designed a novel network that combines both architectures, which make better use of both local and global...
Read more...
Altered synaptic plasticity at hippocampal CA1-CA3 synapses in Alzheimer's disease: integration of amyloid precursor protein intracellular domain and amyloid beta effects into computational models

Alzheimer's disease (AD) is a progressive memory loss and cognitive dysfunction brain disorder brought on by the dysfunctional amyloid precursor protein (APP) processing and clearance of APP peptides. Increased APP levels lead to the production of AD-related peptides including the amyloid APP intracellular domain (AICD) and amyloid beta (Aβ), and consequently modify the intrinsic excitability of the hippocampal CA1 pyramidal neurons, synaptic protein activity, and impair synaptic plasticity at...
Read more...
Burst and Memory-aware Transformer: capturing temporal heterogeneity

Burst patterns, characterized by their temporal heterogeneity, have been observed across a wide range of domains, encompassing event sequences from neuronal firing to various facets of human activities. Recent research on predicting event sequences leveraged a Transformer based on the Hawkes process, incorporating a self-attention mechanism to capture long-term temporal dependencies. To effectively handle bursty temporal patterns, we propose a Burst and Memory-aware Transformer (BMT) model,...
Read more...