Frontiers in Computational Neuroscience
56 subscribers
350 photos
350 links
Download Telegram
Multi-stage semi-supervised learning enhances white matter hyperintensity segmentation

INTRODUCTION: White matter hyperintensities (WMHs) are frequently observed on magnetic resonance (MR) images in older adults, commonly appearing as areas of high signal intensity on fluid-attenuated inversion recovery (FLAIR) MR scans. Elevated WMH volumes are associated with a greater risk of dementia and stroke, even after accounting for vascular risk factors. Manual segmentation, while considered the ground truth, is both labor-intensive and time-consuming, limiting the generation of...
Read more...
Latent dynamics of primary sensory cortical population activity structured by fluctuations in the local field potential

INTRODUCTION: As emerging technologies enable measurement of precise details of the activity within microcircuits at ever-increasing scales, there is a growing need to identify the salient features and patterns within the neural populations that represent physiologically and behaviorally relevant aspects of the network. Accumulating evidence from recordings of large neural populations suggests that neural population activity frequently exhibits relatively low-dimensional structure, with a small...
Read more...
BrainNet: an automated approach for brain stress prediction utilizing electrodermal activity signal with XLNet model

Brain stress monitoring has emerged as a critical research area for understanding and managing stress and neurological health issues. This burgeoning field aims to provide accurate information and prediction about individuals' stress levels by analyzing behavioral data and physiological signals. To address this emerging problem, this research study proposes an innovative approach that uses an attention mechanism-based XLNet model (called BrainNet) for continuous stress monitoring and stress...
Read more...
Facial emotion recognition using deep quantum and advanced transfer learning mechanism

INTRODUCTION: Facial expressions have become a common way for interaction among humans. People cannot comprehend and predict the emotions or expressions of individuals through simple vision. Thus, in psychology, detecting facial expressions or emotion analysis demands an assessment and evaluation of decisions for identifying the emotions of a person or any group during communication. With the recent evolution of technology, AI (Artificial Intelligence) has gained significant usage, wherein DL...
Read more...
Systematic review of cognitive impairment in drivers through mental workload using physiological measures of heart rate variability

The intricate interplay between driver cognitive dysfunction, mental workload (MWL), and heart rate variability (HRV) provides a captivating avenue for investigation within the domain of transportation safety studies. This article provides a systematic review and examines cognitive hindrance stemming from mental workload and heart rate variability. It scrutinizes the mental workload experienced by drivers by leveraging data gleaned from prior studies that employed heart rate monitoring systems...
Read more...
Simulated synapse loss induces depression-like behaviors in deep reinforcement learning

Deep Reinforcement Learning is a branch of artificial intelligence that uses artificial neural networks to model reward-based learning as it occurs in biological agents. Here we modify a Deep Reinforcement Learning approach by imposing a suppressive effect on the connections between neurons in the artificial network-simulating the effect of dendritic spine loss as observed in major depressive disorder (MDD). Surprisingly, this simulated spine loss is sufficient to induce a variety of MDD-like...
Read more...
Editorial: Computational modeling and machine learning methods in neurodevelopment and neurodegeneration: from basic research to clinical applications

No abstract
Read more...
Sex differences in brain MRI using deep learning toward fairer healthcare outcomes

This study leverages deep learning to analyze sex differences in brain MRI data, aiming to further advance fairness in medical imaging. We employed 3D T1-weighted Magnetic Resonance images from four diverse datasets: Calgary-Campinas-359, OASIS-3, Alzheimer's Disease Neuroimaging Initiative, and Cambridge Center for Aging and Neuroscience, ensuring a balanced representation of sexes and a broad demographic scope. Our methodology focused on minimal preprocessing to preserve the integrity of brain...
Read more...
Modeling functional connectivity changes during an auditory language task using line graph neural networks

Functional connectivity (FC) refers to the activation correlation between different brain regions. FC networks as typically represented as graphs with brain regions of interest (ROIs) as nodes and functional correlation as edges. Graph neural networks (GNNs) are machine learning architectures used to analyze FC graphs. However, traditional GNNs are limited in their ability to characterize FC edge attributes because they typically emphasize the importance of ROI node-based brain activation data....
Read more...
A novel method for optimizing epilepsy detection features through multi-domain feature fusion and selection

CONCLUSION: The detection performance of the three classifiers is compared using 10-fold cross-validation. Surpassing other methods in detection accuracy. Consequently, this optimized method for epilepsy seizure detection enhances the diagnostic accuracy of epilepsy seizures.
Read more...
Model of the HVC neural network as a song motor in zebra finch

The nucleus HVC within the avian song system produces crystalized instructions which lead to precise, learned vocalization in zebra finches (Taeniopygia guttata). This paper proposes a model of the HVC neural network based on the physiological properties of individual HVC neurons, their synaptic interactions calibrated by experimental measurements, as well as the synaptic signal into this region which triggers song production. This neural network model comprises of two major neural populations...
Read more...
Spike-HAR++: an energy-efficient and lightweight parallel spiking transformer for event-based human action recognition

Event-based cameras are suitable for human action recognition (HAR) by providing movement perception with highly dynamic range, high temporal resolution, high power efficiency and low latency. Spike Neural Networks (SNNs) are naturally suited to deal with the asynchronous and sparse data from the event cameras due to their spike-based event-driven paradigm, with less power consumption compared to artificial neural networks. In this paper, we propose two end-to-end SNNs, namely Spike-HAR and...
Read more...
A framework for optimal control of oscillations and synchrony applied to non-linear models of neural population dynamics

We adapt non-linear optimal control theory (OCT) to control oscillations and network synchrony and apply it to models of neural population dynamics. OCT is a mathematical framework to compute an efficient stimulation for dynamical systems. In its standard formulation, it requires a well-defined reference trajectory as target state. This requirement, however, may be overly restrictive for oscillatory targets, where the exact trajectory shape might not be relevant. To overcome this limitation, we...
Read more...
Editorial: Symmetry as a guiding principle in artificial and brain neural networks, volume II

No abstract
Read more...
Learning dynamic cognitive map with autonomous navigation

Inspired by animal navigation strategies, we introduce a novel computational model to navigate and map a space rooted in biologically inspired principles. Animals exhibit extraordinary navigation prowess, harnessing memory, imagination, and strategic decision-making to traverse complex and aliased environments adeptly. Our model aims to replicate these capabilities by incorporating a dynamically expanding cognitive map over predicted poses within an active inference framework, enhancing our...
Read more...
FacialNet: facial emotion recognition for mental health analysis using UNet segmentation with transfer learning model

Facial emotion recognition (FER) can serve as a valuable tool for assessing emotional states, which are often linked to mental health. However, mental health encompasses a broad range of factors that go beyond facial expressions. While FER provides insights into certain aspects of emotional well-being, it can be used in conjunction with other assessments to form a more comprehensive understanding of an individual's mental health. This research work proposes a framework for human FER using UNet...
Read more...
Research on adverse event classification algorithm of da Vinci surgical robot based on Bert-BiLSTM model

This study aims to enhance the classification accuracy of adverse events associated with the da Vinci surgical robot through advanced natural language processing techniques, thereby ensuring medical device safety and protecting patient health. Addressing the issues of incomplete and inconsistent adverse event records, we employed a deep learning model that combines BERT and BiLSTM to predict whether adverse event reports resulted in patient harm. We developed the Bert-BiLSTM-Att_dropout model...
Read more...
Alleviating the medical strain: a triage method via cross-domain text classification

It is a universal phenomenon for patients who do not know which clinical department to register in large general hospitals. Although triage nurses can help patients, due to the larger number of patients, they have to stand in a queue for minutes to consult. Recently, there have already been some efforts to devote deep-learning techniques or pre-trained language models (PLMs) to triage recommendations. However, these methods may suffer two main limitations: (1) These methods typically require a...
Read more...
Multimodal sleep staging network based on obstructive sleep apnea

CONCLUSION: The MSDC-SSRNet multi-channel sleep staging architecture proposed in this study enhances widespread system applicability by supplementing inter-channel features. It employs multi-scale attention to extract transition rules between sleep stages and effectively integrates multimodal information. Our method address the limitations of single-channel approaches, enhancing interpretability for clinical applications.
Read more...
Editorial: Deep learning and neuroimage processing in understanding neurological diseases

No abstract
Read more...
Learning delays through gradients and structure: emergence of spatiotemporal patterns in spiking neural networks

We present a Spiking Neural Network (SNN) model that incorporates learnable synaptic delays through two approaches: per-synapse delay learning via Dilated Convolutions with Learnable Spacings (DCLS) and a dynamic pruning strategy that also serves as a form of delay learning. In the latter approach, the network dynamically selects and prunes connections, optimizing the delays in sparse connectivity settings. We evaluate both approaches on the Raw Heidelberg Digits keyword spotting benchmark using...
Read more...