Deep learning-based Alzheimer's disease detection: reproducibility and the effect of modeling choices
INTRODUCTION: Machine Learning (ML) has emerged as a promising approach in healthcare, outperforming traditional statistical techniques. However, to establish ML as a reliable tool in clinical practice, adherence to best practices in data handling, and modeling design and assessment is crucial. In this work, we summarize and strictly adhere to such practices to ensure reproducible and reliable ML. Specifically, we focus on Alzheimer's Disease (AD) detection, a challenging problem in healthcare....
Read more...
INTRODUCTION: Machine Learning (ML) has emerged as a promising approach in healthcare, outperforming traditional statistical techniques. However, to establish ML as a reliable tool in clinical practice, adherence to best practices in data handling, and modeling design and assessment is crucial. In this work, we summarize and strictly adhere to such practices to ensure reproducible and reliable ML. Specifically, we focus on Alzheimer's Disease (AD) detection, a challenging problem in healthcare....
Read more...
Electroencephalogram-based adaptive closed-loop brain-computer interface in neurorehabilitation: a review
Brain-computer interfaces (BCIs) represent a groundbreaking approach to enabling direct communication for individuals with severe motor impairments, circumventing traditional neural and muscular pathways. Among the diverse array of BCI technologies, electroencephalogram (EEG)-based systems are particularly favored due to their non-invasive nature, user-friendly operation, and cost-effectiveness. Recent advancements have facilitated the development of adaptive bidirectional closed-loop BCIs,...
Read more...
Brain-computer interfaces (BCIs) represent a groundbreaking approach to enabling direct communication for individuals with severe motor impairments, circumventing traditional neural and muscular pathways. Among the diverse array of BCI technologies, electroencephalogram (EEG)-based systems are particularly favored due to their non-invasive nature, user-friendly operation, and cost-effectiveness. Recent advancements have facilitated the development of adaptive bidirectional closed-loop BCIs,...
Read more...
Dynamical predictive coding with reservoir computing performs noise-robust multi-sensory speech recognition
Multi-sensory integration is a perceptual process through which the brain synthesizes a unified perception by integrating inputs from multiple sensory modalities. A key issue is understanding how the brain performs multi-sensory integrations using a common neural basis in the cortex. A cortical model based on reservoir computing has been proposed to elucidate the role of recurrent connectivity among cortical neurons in this process. Reservoir computing is well-suited for time series processing,...
Read more...
Multi-sensory integration is a perceptual process through which the brain synthesizes a unified perception by integrating inputs from multiple sensory modalities. A key issue is understanding how the brain performs multi-sensory integrations using a common neural basis in the cortex. A cortical model based on reservoir computing has been proposed to elucidate the role of recurrent connectivity among cortical neurons in this process. Reservoir computing is well-suited for time series processing,...
Read more...
Analyzing top-down visual attention in the context of gamma oscillations: a layer- dependent network-of- networks approach
Top-down visual attention is a fundamental cognitive process that allows individuals to selectively attend to salient visual stimuli in the environment. Recent empirical findings have revealed that gamma oscillations participate in the modulation of visual attention. However, computational studies face challenges when analyzing the attentional process in the context of gamma oscillation due to the unstable nature of gamma oscillations and the complexity induced by the layered fashion in the...
Read more...
Top-down visual attention is a fundamental cognitive process that allows individuals to selectively attend to salient visual stimuli in the environment. Recent empirical findings have revealed that gamma oscillations participate in the modulation of visual attention. However, computational studies face challenges when analyzing the attentional process in the context of gamma oscillation due to the unstable nature of gamma oscillations and the complexity induced by the layered fashion in the...
Read more...
Multi-label remote sensing classification with self-supervised gated multi-modal transformers
INTRODUCTION: With the great success of Transformers in the field of machine learning, it is also gradually attracting widespread interest in the field of remote sensing (RS). However, the research in the field of remote sensing has been hampered by the lack of large labeled data sets and the inconsistency of data modes caused by the diversity of RS platforms. With the rise of self-supervised learning (SSL) algorithms in recent years, RS researchers began to pay attention to the application of...
Read more...
INTRODUCTION: With the great success of Transformers in the field of machine learning, it is also gradually attracting widespread interest in the field of remote sensing (RS). However, the research in the field of remote sensing has been hampered by the lack of large labeled data sets and the inconsistency of data modes caused by the diversity of RS platforms. With the rise of self-supervised learning (SSL) algorithms in recent years, RS researchers began to pay attention to the application of...
Read more...
Editorial: Understanding and bridging the gap between neuromorphic computing and machine learning, volume II
No abstract
Read more...
No abstract
Read more...
Optimizing extubation success: a comparative analysis of time series algorithms and activation functions
CONCLUSION: This study proposes a prediction method using GRU on the topic of extubation, and it can provide the doctors with the clinical application of extubation to give advice for reference.
Read more...
CONCLUSION: This study proposes a prediction method using GRU on the topic of extubation, and it can provide the doctors with the clinical application of extubation to give advice for reference.
Read more...
Decoding the application of deep learning in neuroscience: a bibliometric analysis
The application of deep learning in neuroscience holds unprecedented potential for unraveling the complex dynamics of the brain. Our bibliometric analysis, spanning from 2012 to 2023, delves into the integration of deep learning in neuroscience, shedding light on the evolutionary trends and identifying pivotal research hotspots. Through the examination of 421 articles, this study unveils a significant growth in interdisciplinary research, marked by the burgeoning application of deep learning...
Read more...
The application of deep learning in neuroscience holds unprecedented potential for unraveling the complex dynamics of the brain. Our bibliometric analysis, spanning from 2012 to 2023, delves into the integration of deep learning in neuroscience, shedding light on the evolutionary trends and identifying pivotal research hotspots. Through the examination of 421 articles, this study unveils a significant growth in interdisciplinary research, marked by the burgeoning application of deep learning...
Read more...
Multi-scale asynchronous correlation and 2D convolutional autoencoder for adolescent health risk prediction with limited fMRI data
INTRODUCTION: Adolescence is a fundamental period of transformation, encompassing extensive physical, psychological, and behavioral changes. Effective health risk assessment during this stage is crucial for timely intervention, yet traditional methodologies often fail to accurately predict mental and behavioral health risks due to the intricacy of neural dynamics and the scarcity of quality-annotated fMRI datasets.
Read more...
INTRODUCTION: Adolescence is a fundamental period of transformation, encompassing extensive physical, psychological, and behavioral changes. Effective health risk assessment during this stage is crucial for timely intervention, yet traditional methodologies often fail to accurately predict mental and behavioral health risks due to the intricacy of neural dynamics and the scarcity of quality-annotated fMRI datasets.
Read more...
A combinatorial deep learning method for Alzheimer's disease classification-based merging pretrained networks
INTRODUCTION: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. Despite significant research, AD remains incurable, highlighting the critical need for early diagnosis and intervention to improve patient outcomes. Timely detection plays a crucial role in managing the disease more effectively. Pretrained convolutional neural networks (CNNs) trained on large-scale datasets, such as ImageNet, have...
Read more...
INTRODUCTION: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. Despite significant research, AD remains incurable, highlighting the critical need for early diagnosis and intervention to improve patient outcomes. Timely detection plays a crucial role in managing the disease more effectively. Pretrained convolutional neural networks (CNNs) trained on large-scale datasets, such as ImageNet, have...
Read more...
Data-centric automated approach to predict autism spectrum disorder based on selective features and explainable artificial intelligence
Autism spectrum disorder (ASD) is a neurodevelopmental condition marked by notable challenges in cognitive function, understanding language, recognizing objects, interacting with others, and communicating effectively. Its origins are mainly genetic, and identifying it early and intervening promptly can reduce the necessity for extensive medical treatments and lengthy diagnostic procedures for those impacted by ASD. This research is designed with two types of experimentation for ASD analysis. In...
Read more...
Autism spectrum disorder (ASD) is a neurodevelopmental condition marked by notable challenges in cognitive function, understanding language, recognizing objects, interacting with others, and communicating effectively. Its origins are mainly genetic, and identifying it early and intervening promptly can reduce the necessity for extensive medical treatments and lengthy diagnostic procedures for those impacted by ASD. This research is designed with two types of experimentation for ASD analysis. In...
Read more...
Multi-stage semi-supervised learning enhances white matter hyperintensity segmentation
INTRODUCTION: White matter hyperintensities (WMHs) are frequently observed on magnetic resonance (MR) images in older adults, commonly appearing as areas of high signal intensity on fluid-attenuated inversion recovery (FLAIR) MR scans. Elevated WMH volumes are associated with a greater risk of dementia and stroke, even after accounting for vascular risk factors. Manual segmentation, while considered the ground truth, is both labor-intensive and time-consuming, limiting the generation of...
Read more...
INTRODUCTION: White matter hyperintensities (WMHs) are frequently observed on magnetic resonance (MR) images in older adults, commonly appearing as areas of high signal intensity on fluid-attenuated inversion recovery (FLAIR) MR scans. Elevated WMH volumes are associated with a greater risk of dementia and stroke, even after accounting for vascular risk factors. Manual segmentation, while considered the ground truth, is both labor-intensive and time-consuming, limiting the generation of...
Read more...
Latent dynamics of primary sensory cortical population activity structured by fluctuations in the local field potential
INTRODUCTION: As emerging technologies enable measurement of precise details of the activity within microcircuits at ever-increasing scales, there is a growing need to identify the salient features and patterns within the neural populations that represent physiologically and behaviorally relevant aspects of the network. Accumulating evidence from recordings of large neural populations suggests that neural population activity frequently exhibits relatively low-dimensional structure, with a small...
Read more...
INTRODUCTION: As emerging technologies enable measurement of precise details of the activity within microcircuits at ever-increasing scales, there is a growing need to identify the salient features and patterns within the neural populations that represent physiologically and behaviorally relevant aspects of the network. Accumulating evidence from recordings of large neural populations suggests that neural population activity frequently exhibits relatively low-dimensional structure, with a small...
Read more...
BrainNet: an automated approach for brain stress prediction utilizing electrodermal activity signal with XLNet model
Brain stress monitoring has emerged as a critical research area for understanding and managing stress and neurological health issues. This burgeoning field aims to provide accurate information and prediction about individuals' stress levels by analyzing behavioral data and physiological signals. To address this emerging problem, this research study proposes an innovative approach that uses an attention mechanism-based XLNet model (called BrainNet) for continuous stress monitoring and stress...
Read more...
Brain stress monitoring has emerged as a critical research area for understanding and managing stress and neurological health issues. This burgeoning field aims to provide accurate information and prediction about individuals' stress levels by analyzing behavioral data and physiological signals. To address this emerging problem, this research study proposes an innovative approach that uses an attention mechanism-based XLNet model (called BrainNet) for continuous stress monitoring and stress...
Read more...
Facial emotion recognition using deep quantum and advanced transfer learning mechanism
INTRODUCTION: Facial expressions have become a common way for interaction among humans. People cannot comprehend and predict the emotions or expressions of individuals through simple vision. Thus, in psychology, detecting facial expressions or emotion analysis demands an assessment and evaluation of decisions for identifying the emotions of a person or any group during communication. With the recent evolution of technology, AI (Artificial Intelligence) has gained significant usage, wherein DL...
Read more...
INTRODUCTION: Facial expressions have become a common way for interaction among humans. People cannot comprehend and predict the emotions or expressions of individuals through simple vision. Thus, in psychology, detecting facial expressions or emotion analysis demands an assessment and evaluation of decisions for identifying the emotions of a person or any group during communication. With the recent evolution of technology, AI (Artificial Intelligence) has gained significant usage, wherein DL...
Read more...
Systematic review of cognitive impairment in drivers through mental workload using physiological measures of heart rate variability
The intricate interplay between driver cognitive dysfunction, mental workload (MWL), and heart rate variability (HRV) provides a captivating avenue for investigation within the domain of transportation safety studies. This article provides a systematic review and examines cognitive hindrance stemming from mental workload and heart rate variability. It scrutinizes the mental workload experienced by drivers by leveraging data gleaned from prior studies that employed heart rate monitoring systems...
Read more...
The intricate interplay between driver cognitive dysfunction, mental workload (MWL), and heart rate variability (HRV) provides a captivating avenue for investigation within the domain of transportation safety studies. This article provides a systematic review and examines cognitive hindrance stemming from mental workload and heart rate variability. It scrutinizes the mental workload experienced by drivers by leveraging data gleaned from prior studies that employed heart rate monitoring systems...
Read more...
Simulated synapse loss induces depression-like behaviors in deep reinforcement learning
Deep Reinforcement Learning is a branch of artificial intelligence that uses artificial neural networks to model reward-based learning as it occurs in biological agents. Here we modify a Deep Reinforcement Learning approach by imposing a suppressive effect on the connections between neurons in the artificial network-simulating the effect of dendritic spine loss as observed in major depressive disorder (MDD). Surprisingly, this simulated spine loss is sufficient to induce a variety of MDD-like...
Read more...
Deep Reinforcement Learning is a branch of artificial intelligence that uses artificial neural networks to model reward-based learning as it occurs in biological agents. Here we modify a Deep Reinforcement Learning approach by imposing a suppressive effect on the connections between neurons in the artificial network-simulating the effect of dendritic spine loss as observed in major depressive disorder (MDD). Surprisingly, this simulated spine loss is sufficient to induce a variety of MDD-like...
Read more...
Editorial: Computational modeling and machine learning methods in neurodevelopment and neurodegeneration: from basic research to clinical applications
No abstract
Read more...
No abstract
Read more...
Sex differences in brain MRI using deep learning toward fairer healthcare outcomes
This study leverages deep learning to analyze sex differences in brain MRI data, aiming to further advance fairness in medical imaging. We employed 3D T1-weighted Magnetic Resonance images from four diverse datasets: Calgary-Campinas-359, OASIS-3, Alzheimer's Disease Neuroimaging Initiative, and Cambridge Center for Aging and Neuroscience, ensuring a balanced representation of sexes and a broad demographic scope. Our methodology focused on minimal preprocessing to preserve the integrity of brain...
Read more...
This study leverages deep learning to analyze sex differences in brain MRI data, aiming to further advance fairness in medical imaging. We employed 3D T1-weighted Magnetic Resonance images from four diverse datasets: Calgary-Campinas-359, OASIS-3, Alzheimer's Disease Neuroimaging Initiative, and Cambridge Center for Aging and Neuroscience, ensuring a balanced representation of sexes and a broad demographic scope. Our methodology focused on minimal preprocessing to preserve the integrity of brain...
Read more...
Modeling functional connectivity changes during an auditory language task using line graph neural networks
Functional connectivity (FC) refers to the activation correlation between different brain regions. FC networks as typically represented as graphs with brain regions of interest (ROIs) as nodes and functional correlation as edges. Graph neural networks (GNNs) are machine learning architectures used to analyze FC graphs. However, traditional GNNs are limited in their ability to characterize FC edge attributes because they typically emphasize the importance of ROI node-based brain activation data....
Read more...
Functional connectivity (FC) refers to the activation correlation between different brain regions. FC networks as typically represented as graphs with brain regions of interest (ROIs) as nodes and functional correlation as edges. Graph neural networks (GNNs) are machine learning architectures used to analyze FC graphs. However, traditional GNNs are limited in their ability to characterize FC edge attributes because they typically emphasize the importance of ROI node-based brain activation data....
Read more...
A novel method for optimizing epilepsy detection features through multi-domain feature fusion and selection
CONCLUSION: The detection performance of the three classifiers is compared using 10-fold cross-validation. Surpassing other methods in detection accuracy. Consequently, this optimized method for epilepsy seizure detection enhances the diagnostic accuracy of epilepsy seizures.
Read more...
CONCLUSION: The detection performance of the three classifiers is compared using 10-fold cross-validation. Surpassing other methods in detection accuracy. Consequently, this optimized method for epilepsy seizure detection enhances the diagnostic accuracy of epilepsy seizures.
Read more...