Frontiers in Computational Neuroscience
57 subscribers
350 photos
350 links
Download Telegram
Rényi entropy-complexity causality space: a novel neurocomputational tool for detecting scale-free features in EEG/iEEG data

Scale-free brain activity, linked with learning, the integration of different time scales, and the formation of mental models, is correlated with a metastable cognitive basis. The spectral slope, a key aspect of scale-free dynamics, was proposed as a potential indicator to distinguish between different sleep stages. Studies suggest that brain networks maintain a consistent scale-free structure across wakefulness, anesthesia, and recovery. Although differences in anesthetic sensitivity between...
Read more...
Hippocampal formation-inspired global self-localization: quick recovery from the kidnapped robot problem from an egocentric perspective

It remains difficult for mobile robots to continue accurate self-localization when they are suddenly teleported to a location that is different from their beliefs during navigation. Incorporating insights from neuroscience into developing a spatial cognition model for mobile robots may make it possible to acquire the ability to respond appropriately to changing situations, similar to living organisms. Recent neuroscience research has shown that during teleportation in rat navigation, neural...
Read more...
EEG-based emotion recognition using graph convolutional neural network with dual attention mechanism

EEG-based emotion recognition is becoming crucial in brain-computer interfaces (BCI). Currently, most researches focus on improving accuracy, while neglecting further research on the interpretability of models, we are committed to analyzing the impact of different brain regions and signal frequency bands on emotion generation based on graph structure. Therefore, this paper proposes a method named Dual Attention Mechanism Graph Convolutional Neural Network (DAMGCN). Specifically, we utilize graph...
Read more...
Editorial: Neuromorphic computing: from emerging materials and devices to algorithms and implementation of neural networks inspired by brain neural mechanism

No abstract
Read more...
Eight challenges in developing theory of intelligence

A good theory of mathematical beauty is more practical than any current observation, as new predictions about physical reality can be self-consistently verified. This belief applies to the current status of understanding deep neural networks including large language models and even the biological intelligence. Toy models provide a metaphor of physical reality, allowing mathematically formulating the reality (i.e., the so-called theory), which can be updated as more conjectures are justified or...
Read more...
A neural basis for learning sequential memory in brain loop structures

INTRODUCTION: Behaviors often involve a sequence of events, and learning and reproducing it is essential for sequential memory. Brain loop structures refer to loop-shaped inter-regional connection structures in the brain such as cortico-basal ganglia-thalamic and cortico-cerebellar loops. They are thought to play a crucial role in supporting sequential memory, but it is unclear what properties of the loop structure are important and why.
Read more...
Multiscale modeling of neuronal dynamics in hippocampus CA1

The development of biologically realistic models of brain microcircuits and regions constitutes currently a very relevant topic in computational neuroscience. One of the main challenges of such models is the passage between different scales, going from the microscale (cellular) to the meso (microcircuit) and macroscale (region or whole-brain level), while keeping at the same time a constraint on the demand of computational resources. In this paper we introduce a multiscale modeling framework for...
Read more...
A functional contextual, observer-centric, quantum mechanical, and neuro-symbolic approach to solving the alignment problem of artificial general intelligence: safe AI through intersecting computational psychological neuroscience and LLM architecture for emergent theory of mind

There have been impressive advancements in the field of natural language processing (NLP) in recent years, largely driven by innovations in the development of transformer-based large language models (LLM) that utilize "attention." This approach employs masked self-attention to establish (via similarly) different positions of tokens (words) within an inputted sequence of tokens to compute the most appropriate response based on its training corpus. However, there is speculation as to whether this...
Read more...
Simulating combined monoaminergic depletions in a PD animal model through a bio-constrained differential equations system

INTRODUCTION: Historically, Parkinson's Disease (PD) research has focused on the dysfunction of dopamine-producing cells in the substantia nigra pars compacta, which is linked to motor regulation in the basal ganglia. Therapies have mainly aimed at restoring dopamine (DA) levels, showing effectiveness but variable outcomes and side effects. Recent evidence indicates that PD complexity implicates disruptions in DA, noradrenaline (NA), and serotonin (5-HT) systems, which may underlie the...
Read more...
Deep learning for detecting prenatal alcohol exposure in pediatric brain MRI: a transfer learning approach with explainability insights

Prenatal alcohol exposure (PAE) refers to the exposure of the developing fetus due to alcohol consumption during pregnancy and can have life-long consequences for learning, behavior, and health. Understanding the impact of PAE on the developing brain manifests challenges due to its complex structural and functional attributes, which can be addressed by leveraging machine learning (ML) and deep learning (DL) approaches. While most ML and DL models have been tailored for adult-centric problems,...
Read more...
The significance of cerebellar contributions in early-life through aging

No abstract
Read more...
Classification of epileptic seizures in EEG data based on iterative gated graph convolution network

INTRODUCTION: The automatic and precise classification of epilepsy types using electroencephalogram (EEG) data promises significant advancements in diagnosing patients with epilepsy. However, the intricate interplay among multiple electrode signals in EEG data poses challenges. Recently, Graph Convolutional Neural Networks (GCN) have shown strength in analyzing EEG data due to their capability to describe complex relationships among different EEG regions. Nevertheless, several challenges remain:...
Read more...
Quantifying network behavior in the rat prefrontal cortex

The question of how consciousness and behavior arise from neural activity is fundamental to understanding the brain, and to improving the diagnosis and treatment of neurological and psychiatric disorders. There is significant murine and primate literature on how behavior is related to the electrophysiological activity of the medial prefrontal cortex and its role in working memory processes such as planning and decision-making. Existing experimental designs, specifically the rodent spike train...
Read more...
Nonlinear analysis of neuronal firing modulated by sinusoidal stimulation at axons in rat hippocampus

INTRODUCTION: Electrical stimulation of the brain has shown promising prospects in treating various brain diseases. Although biphasic pulse stimulation remains the predominant clinical approach, there has been increasing interest in exploring alternative stimulation waveforms, such as sinusoidal stimulation, to improve the effectiveness of brain stimulation and to expand its application to a wider range of brain disorders. Despite this growing attention, the effects of sinusoidal stimulation on...
Read more...
Bursting gamma oscillations in neural mass models

Gamma oscillations (30-120 Hz) in the brain are not periodic cycles, but they typically appear in short-time windows, often called oscillatory bursts. While the origin of this bursting phenomenon is still unclear, some recent studies hypothesize its origin in the external or endogenous noise of neural networks. We demonstrate that an exact neural mass model of excitatory and inhibitory quadratic-integrate and fire-spiking neurons theoretically predicts the emergence of a different regime of...
Read more...
Unified theory of alpha, mu, and tau rhythms via eigenmodes of brain activity

A compact description of the frequency structure and topography of human alpha-band rhythms is obtained by use of the first four brain activity eigenmodes previously derived from corticothalamic neural field theory. Just two eigenmodes that overlap in frequency are found to reproduce the observed topography of the classical alpha rhythm for subjects with a single, occipitally concentrated alpha peak in their electroencephalograms. Alpha frequency splitting and relative amplitudes of double alpha...
Read more...
Editorial: Understanding the role of oscillations, mutual information and synchronization in perception and action

No abstract
Read more...
Capturing biomarkers associated with Alzheimer disease subtypes using data distribution characteristics

Late-onset Alzheimer disease (AD) is a highly complex disease with multiple subtypes, as demonstrated by its disparate risk factors, pathological manifestations, and clinical traits. Discovery of biomarkers to diagnose specific AD subtypes is a key step towards understanding biological mechanisms underlying this enigmatic disease, generating candidate drug targets, and selecting participants for drug trials. Popular statistical methods for evaluating candidate biomarkers, fold change (FC) and...
Read more...
Reinforcement learning as a robotics-inspired framework for insect navigation: from spatial representations to neural implementation

Bees are among the master navigators of the insect world. Despite impressive advances in robot navigation research, the performance of these insects is still unrivaled by any artificial system in terms of training efficiency and generalization capabilities, particularly considering the limited computational capacity. On the other hand, computational principles underlying these extraordinary feats are still only partially understood. The theoretical framework of reinforcement learning (RL)...
Read more...
Deep learning-based Alzheimer's disease detection: reproducibility and the effect of modeling choices

INTRODUCTION: Machine Learning (ML) has emerged as a promising approach in healthcare, outperforming traditional statistical techniques. However, to establish ML as a reliable tool in clinical practice, adherence to best practices in data handling, and modeling design and assessment is crucial. In this work, we summarize and strictly adhere to such practices to ensure reproducible and reliable ML. Specifically, we focus on Alzheimer's Disease (AD) detection, a challenging problem in healthcare....
Read more...
Electroencephalogram-based adaptive closed-loop brain-computer interface in neurorehabilitation: a review

Brain-computer interfaces (BCIs) represent a groundbreaking approach to enabling direct communication for individuals with severe motor impairments, circumventing traditional neural and muscular pathways. Among the diverse array of BCI technologies, electroencephalogram (EEG)-based systems are particularly favored due to their non-invasive nature, user-friendly operation, and cost-effectiveness. Recent advancements have facilitated the development of adaptive bidirectional closed-loop BCIs,...
Read more...