The emergence of enhanced intelligence in a brain-inspired cognitive architecture
The Causal Cognitive Architecture is a brain-inspired cognitive architecture developed from the hypothesis that the navigation circuits in the ancestors of mammals duplicated to eventually form the neocortex. Thus, millions of neocortical minicolumns are functionally modeled in the architecture as millions of "navigation maps." An investigation of a cognitive architecture based on these navigation maps has previously shown that modest changes in the architecture allow the ready emergence of...
Read more...
The Causal Cognitive Architecture is a brain-inspired cognitive architecture developed from the hypothesis that the navigation circuits in the ancestors of mammals duplicated to eventually form the neocortex. Thus, millions of neocortical minicolumns are functionally modeled in the architecture as millions of "navigation maps." An investigation of a cognitive architecture based on these navigation maps has previously shown that modest changes in the architecture allow the ready emergence of...
Read more...
An enhanced pattern detection and segmentation of brain tumors in MRI images using deep learning technique
Neuroscience is a swiftly progressing discipline that aims to unravel the intricate workings of the human brain and mind. Brain tumors, ranging from non-cancerous to malignant forms, pose a significant diagnostic challenge due to the presence of more than 100 distinct types. Effective treatment hinges on the precise detection and segmentation of these tumors early. We introduce a cutting-edge deep-learning approach employing a binary convolutional neural network (BCNN) to address this. This...
Read more...
Neuroscience is a swiftly progressing discipline that aims to unravel the intricate workings of the human brain and mind. Brain tumors, ranging from non-cancerous to malignant forms, pose a significant diagnostic challenge due to the presence of more than 100 distinct types. Effective treatment hinges on the precise detection and segmentation of these tumors early. We introduce a cutting-edge deep-learning approach employing a binary convolutional neural network (BCNN) to address this. This...
Read more...
Conditional spatial biased intuitionistic clustering technique for brain MRI image segmentation
In clinical research, it is crucial to segment the magnetic resonance (MR) brain image for studying the internal tissues of the brain. To address this challenge in a sustainable manner, a novel approach has been proposed leveraging the power of unsupervised clustering while integrating conditional spatial properties of the image into intuitionistic clustering technique for segmenting MRI images of brain scans. In the proposed technique, an Intuitionistic-based clustering approach incorporates a...
Read more...
In clinical research, it is crucial to segment the magnetic resonance (MR) brain image for studying the internal tissues of the brain. To address this challenge in a sustainable manner, a novel approach has been proposed leveraging the power of unsupervised clustering while integrating conditional spatial properties of the image into intuitionistic clustering technique for segmenting MRI images of brain scans. In the proposed technique, an Intuitionistic-based clustering approach incorporates a...
Read more...
Knowledge graph construction for heart failure using large language models with prompt engineering
INTRODUCTION: Constructing an accurate and comprehensive knowledge graph of specific diseases is critical for practical clinical disease diagnosis and treatment, reasoning and decision support, rehabilitation, and health management. For knowledge graph construction tasks (such as named entity recognition, relation extraction), classical BERT-based methods require a large amount of training data to ensure model performance. However, real-world medical annotation data, especially disease-specific...
Read more...
INTRODUCTION: Constructing an accurate and comprehensive knowledge graph of specific diseases is critical for practical clinical disease diagnosis and treatment, reasoning and decision support, rehabilitation, and health management. For knowledge graph construction tasks (such as named entity recognition, relation extraction), classical BERT-based methods require a large amount of training data to ensure model performance. However, real-world medical annotation data, especially disease-specific...
Read more...
A spatial map: a propitious choice for constraining the binding problem
Many studies have shown that the human visual system has two major functionally distinct cortical visual pathways: a ventral pathway, thought to be important for object recognition, and a dorsal pathway, thought to be important for spatial cognition. According to our and others previous studies, artificial neural networks with two segregated pathways can determine objects' identities and locations more accurately and efficiently than one-pathway artificial neural networks. In addition, we showed...
Read more...
Many studies have shown that the human visual system has two major functionally distinct cortical visual pathways: a ventral pathway, thought to be important for object recognition, and a dorsal pathway, thought to be important for spatial cognition. According to our and others previous studies, artificial neural networks with two segregated pathways can determine objects' identities and locations more accurately and efficiently than one-pathway artificial neural networks. In addition, we showed...
Read more...
A three-step, "brute-force" approach toward optimized affine spatial normalization
The first step in spatial normalization of magnetic resonance (MR) images commonly is an affine transformation, which may be vulnerable to image imperfections (such as inhomogeneities or "unusual" heads). Additionally, common software solutions use internal starting estimates to allow for a more efficient computation, which may pose a problem in datasets not conforming to these assumptions (such as those from children). In this technical note, three main questions were addressed: one, does the...
Read more...
The first step in spatial normalization of magnetic resonance (MR) images commonly is an affine transformation, which may be vulnerable to image imperfections (such as inhomogeneities or "unusual" heads). Additionally, common software solutions use internal starting estimates to allow for a more efficient computation, which may pose a problem in datasets not conforming to these assumptions (such as those from children). In this technical note, three main questions were addressed: one, does the...
Read more...
Purkinje cell models: past, present and future
The investigation of the dynamics of Purkinje cell (PC) activity is crucial to unravel the role of the cerebellum in motor control, learning and cognitive processes. Within the cerebellar cortex (CC), these neurons receive all the incoming sensory and motor information, transform it and generate the entire cerebellar output. The relatively homogenous and repetitive structure of the CC, common to all vertebrate species, suggests a single computation mechanism shared across all PCs. While PC...
Read more...
The investigation of the dynamics of Purkinje cell (PC) activity is crucial to unravel the role of the cerebellum in motor control, learning and cognitive processes. Within the cerebellar cortex (CC), these neurons receive all the incoming sensory and motor information, transform it and generate the entire cerebellar output. The relatively homogenous and repetitive structure of the CC, common to all vertebrate species, suggests a single computation mechanism shared across all PCs. While PC...
Read more...
SaE-GBLS: an effective self-adaptive evolutionary optimized graph-broad model for EEG-based automatic epileptic seizure detection
INTRODUCTION: Epilepsy is a common neurological condition that affects a large number of individuals worldwide. One of the primary challenges in epilepsy is the accurate and timely detection of seizure. Recently, the graph regularized broad learning system (GBLS) has achieved superior performance improvement with its flat structure and less time-consuming training process compared to deep neural networks. Nevertheless, the number of feature and enhancement nodes in GBLS is predetermined. These...
Read more...
INTRODUCTION: Epilepsy is a common neurological condition that affects a large number of individuals worldwide. One of the primary challenges in epilepsy is the accurate and timely detection of seizure. Recently, the graph regularized broad learning system (GBLS) has achieved superior performance improvement with its flat structure and less time-consuming training process compared to deep neural networks. Nevertheless, the number of feature and enhancement nodes in GBLS is predetermined. These...
Read more...
The synaptic correlates of serial position effects in sequential working memory
Sequential working memory (SWM), referring to the temporary storage and manipulation of information in order, plays a fundamental role in brain cognitive functions. The serial position effect refers to the phenomena that recall accuracy of an item is associated to the order of the item being presented. The neural mechanism underpinning the serial position effect remains unclear. The synaptic mechanism of working memory proposes that information is stored as hidden states in the form of...
Read more...
Sequential working memory (SWM), referring to the temporary storage and manipulation of information in order, plays a fundamental role in brain cognitive functions. The serial position effect refers to the phenomena that recall accuracy of an item is associated to the order of the item being presented. The neural mechanism underpinning the serial position effect remains unclear. The synaptic mechanism of working memory proposes that information is stored as hidden states in the form of...
Read more...
Rényi entropy-complexity causality space: a novel neurocomputational tool for detecting scale-free features in EEG/iEEG data
Scale-free brain activity, linked with learning, the integration of different time scales, and the formation of mental models, is correlated with a metastable cognitive basis. The spectral slope, a key aspect of scale-free dynamics, was proposed as a potential indicator to distinguish between different sleep stages. Studies suggest that brain networks maintain a consistent scale-free structure across wakefulness, anesthesia, and recovery. Although differences in anesthetic sensitivity between...
Read more...
Scale-free brain activity, linked with learning, the integration of different time scales, and the formation of mental models, is correlated with a metastable cognitive basis. The spectral slope, a key aspect of scale-free dynamics, was proposed as a potential indicator to distinguish between different sleep stages. Studies suggest that brain networks maintain a consistent scale-free structure across wakefulness, anesthesia, and recovery. Although differences in anesthetic sensitivity between...
Read more...
Hippocampal formation-inspired global self-localization: quick recovery from the kidnapped robot problem from an egocentric perspective
It remains difficult for mobile robots to continue accurate self-localization when they are suddenly teleported to a location that is different from their beliefs during navigation. Incorporating insights from neuroscience into developing a spatial cognition model for mobile robots may make it possible to acquire the ability to respond appropriately to changing situations, similar to living organisms. Recent neuroscience research has shown that during teleportation in rat navigation, neural...
Read more...
It remains difficult for mobile robots to continue accurate self-localization when they are suddenly teleported to a location that is different from their beliefs during navigation. Incorporating insights from neuroscience into developing a spatial cognition model for mobile robots may make it possible to acquire the ability to respond appropriately to changing situations, similar to living organisms. Recent neuroscience research has shown that during teleportation in rat navigation, neural...
Read more...
EEG-based emotion recognition using graph convolutional neural network with dual attention mechanism
EEG-based emotion recognition is becoming crucial in brain-computer interfaces (BCI). Currently, most researches focus on improving accuracy, while neglecting further research on the interpretability of models, we are committed to analyzing the impact of different brain regions and signal frequency bands on emotion generation based on graph structure. Therefore, this paper proposes a method named Dual Attention Mechanism Graph Convolutional Neural Network (DAMGCN). Specifically, we utilize graph...
Read more...
EEG-based emotion recognition is becoming crucial in brain-computer interfaces (BCI). Currently, most researches focus on improving accuracy, while neglecting further research on the interpretability of models, we are committed to analyzing the impact of different brain regions and signal frequency bands on emotion generation based on graph structure. Therefore, this paper proposes a method named Dual Attention Mechanism Graph Convolutional Neural Network (DAMGCN). Specifically, we utilize graph...
Read more...
Editorial: Neuromorphic computing: from emerging materials and devices to algorithms and implementation of neural networks inspired by brain neural mechanism
No abstract
Read more...
No abstract
Read more...
Eight challenges in developing theory of intelligence
A good theory of mathematical beauty is more practical than any current observation, as new predictions about physical reality can be self-consistently verified. This belief applies to the current status of understanding deep neural networks including large language models and even the biological intelligence. Toy models provide a metaphor of physical reality, allowing mathematically formulating the reality (i.e., the so-called theory), which can be updated as more conjectures are justified or...
Read more...
A good theory of mathematical beauty is more practical than any current observation, as new predictions about physical reality can be self-consistently verified. This belief applies to the current status of understanding deep neural networks including large language models and even the biological intelligence. Toy models provide a metaphor of physical reality, allowing mathematically formulating the reality (i.e., the so-called theory), which can be updated as more conjectures are justified or...
Read more...
A neural basis for learning sequential memory in brain loop structures
INTRODUCTION: Behaviors often involve a sequence of events, and learning and reproducing it is essential for sequential memory. Brain loop structures refer to loop-shaped inter-regional connection structures in the brain such as cortico-basal ganglia-thalamic and cortico-cerebellar loops. They are thought to play a crucial role in supporting sequential memory, but it is unclear what properties of the loop structure are important and why.
Read more...
INTRODUCTION: Behaviors often involve a sequence of events, and learning and reproducing it is essential for sequential memory. Brain loop structures refer to loop-shaped inter-regional connection structures in the brain such as cortico-basal ganglia-thalamic and cortico-cerebellar loops. They are thought to play a crucial role in supporting sequential memory, but it is unclear what properties of the loop structure are important and why.
Read more...
Multiscale modeling of neuronal dynamics in hippocampus CA1
The development of biologically realistic models of brain microcircuits and regions constitutes currently a very relevant topic in computational neuroscience. One of the main challenges of such models is the passage between different scales, going from the microscale (cellular) to the meso (microcircuit) and macroscale (region or whole-brain level), while keeping at the same time a constraint on the demand of computational resources. In this paper we introduce a multiscale modeling framework for...
Read more...
The development of biologically realistic models of brain microcircuits and regions constitutes currently a very relevant topic in computational neuroscience. One of the main challenges of such models is the passage between different scales, going from the microscale (cellular) to the meso (microcircuit) and macroscale (region or whole-brain level), while keeping at the same time a constraint on the demand of computational resources. In this paper we introduce a multiscale modeling framework for...
Read more...
A functional contextual, observer-centric, quantum mechanical, and neuro-symbolic approach to solving the alignment problem of artificial general intelligence: safe AI through intersecting computational psychological neuroscience and LLM architecture for emergent theory of mind
There have been impressive advancements in the field of natural language processing (NLP) in recent years, largely driven by innovations in the development of transformer-based large language models (LLM) that utilize "attention." This approach employs masked self-attention to establish (via similarly) different positions of tokens (words) within an inputted sequence of tokens to compute the most appropriate response based on its training corpus. However, there is speculation as to whether this...
Read more...
There have been impressive advancements in the field of natural language processing (NLP) in recent years, largely driven by innovations in the development of transformer-based large language models (LLM) that utilize "attention." This approach employs masked self-attention to establish (via similarly) different positions of tokens (words) within an inputted sequence of tokens to compute the most appropriate response based on its training corpus. However, there is speculation as to whether this...
Read more...
Simulating combined monoaminergic depletions in a PD animal model through a bio-constrained differential equations system
INTRODUCTION: Historically, Parkinson's Disease (PD) research has focused on the dysfunction of dopamine-producing cells in the substantia nigra pars compacta, which is linked to motor regulation in the basal ganglia. Therapies have mainly aimed at restoring dopamine (DA) levels, showing effectiveness but variable outcomes and side effects. Recent evidence indicates that PD complexity implicates disruptions in DA, noradrenaline (NA), and serotonin (5-HT) systems, which may underlie the...
Read more...
INTRODUCTION: Historically, Parkinson's Disease (PD) research has focused on the dysfunction of dopamine-producing cells in the substantia nigra pars compacta, which is linked to motor regulation in the basal ganglia. Therapies have mainly aimed at restoring dopamine (DA) levels, showing effectiveness but variable outcomes and side effects. Recent evidence indicates that PD complexity implicates disruptions in DA, noradrenaline (NA), and serotonin (5-HT) systems, which may underlie the...
Read more...
Deep learning for detecting prenatal alcohol exposure in pediatric brain MRI: a transfer learning approach with explainability insights
Prenatal alcohol exposure (PAE) refers to the exposure of the developing fetus due to alcohol consumption during pregnancy and can have life-long consequences for learning, behavior, and health. Understanding the impact of PAE on the developing brain manifests challenges due to its complex structural and functional attributes, which can be addressed by leveraging machine learning (ML) and deep learning (DL) approaches. While most ML and DL models have been tailored for adult-centric problems,...
Read more...
Prenatal alcohol exposure (PAE) refers to the exposure of the developing fetus due to alcohol consumption during pregnancy and can have life-long consequences for learning, behavior, and health. Understanding the impact of PAE on the developing brain manifests challenges due to its complex structural and functional attributes, which can be addressed by leveraging machine learning (ML) and deep learning (DL) approaches. While most ML and DL models have been tailored for adult-centric problems,...
Read more...
Classification of epileptic seizures in EEG data based on iterative gated graph convolution network
INTRODUCTION: The automatic and precise classification of epilepsy types using electroencephalogram (EEG) data promises significant advancements in diagnosing patients with epilepsy. However, the intricate interplay among multiple electrode signals in EEG data poses challenges. Recently, Graph Convolutional Neural Networks (GCN) have shown strength in analyzing EEG data due to their capability to describe complex relationships among different EEG regions. Nevertheless, several challenges remain:...
Read more...
INTRODUCTION: The automatic and precise classification of epilepsy types using electroencephalogram (EEG) data promises significant advancements in diagnosing patients with epilepsy. However, the intricate interplay among multiple electrode signals in EEG data poses challenges. Recently, Graph Convolutional Neural Networks (GCN) have shown strength in analyzing EEG data due to their capability to describe complex relationships among different EEG regions. Nevertheless, several challenges remain:...
Read more...