Frontiers in Computational Neuroscience
57 subscribers
350 photos
350 links
Download Telegram
Pathological cell assembly dynamics in a striatal MSN network model

Under normal conditions the principal cells of the striatum, medium spiny neurons (MSNs), show structured cell assembly activity patterns which alternate sequentially over exceedingly long timescales of many minutes. It is important to understand this activity since it is characteristically disrupted in multiple pathologies, such as Parkinson's disease and dyskinesia, and thought to be caused by alterations in the MSN to MSN lateral inhibitory connections and in the strength and distribution of...
Read more...
SS-DRPL: self-supervised deep representation pattern learning for voice-based Parkinson's disease detection

Parkinson's disease (PD) is a globally significant health challenge, necessitating accurate and timely diagnostic methods to facilitate effective treatment and intervention. In recent years, self-supervised deep representation pattern learning (SS-DRPL) has emerged as a promising approach for extracting valuable representations from data, offering the potential to enhance the efficiency of voice-based PD detection. This research study focuses on investigating the utilization of SS-DRPL in...
Read more...
Enhancing brain tumor classification in MRI scans with a multi-layer customized convolutional neural network approach

CONCLUSION: This study represents a significant advancement in the early detection and treatment planning of brain tumors, offering a more efficient and accurate alternative to traditional MRI analysis methods.
Read more...
Design and evaluation of a global workspace agent embodied in a realistic multimodal environment

As the apparent intelligence of artificial neural networks (ANNs) advances, they are increasingly likened to the functional networks and information processing capabilities of the human brain. Such comparisons have typically focused on particular modalities, such as vision or language. The next frontier is to use the latest advances in ANNs to design and investigate scalable models of higher-level cognitive processes, such as conscious information access, which have historically lacked concrete...
Read more...
Residual and bidirectional LSTM for epileptic seizure detection

Electroencephalogram (EEG) plays a pivotal role in the detection and analysis of epileptic seizures, which affects over 70 million people in the world. Nonetheless, the visual interpretation of EEG signals for epilepsy detection is laborious and time-consuming. To tackle this open challenge, we introduce a straightforward yet efficient hybrid deep learning approach, named ResBiLSTM, for detecting epileptic seizures using EEG signals. Firstly, a one-dimensional residual neural network (ResNet) is...
Read more...
A novel multi-feature fusion attention neural network for the recognition of epileptic EEG signals

Epilepsy is a common chronic brain disorder. Detecting epilepsy by observing electroencephalography (EEG) is the main method neurologists use, but this method is time-consuming. EEG signals are non-stationary, nonlinear, and often highly noisy, so it remains challenging to recognize epileptic EEG signals more accurately and automatically. This paper proposes a novel classification system of epileptic EEG signals for single-channel EEG based on the attention network that integrates time-frequency...
Read more...
Translational symmetry in convolutions with localized kernels causes an implicit bias toward high frequency adversarial examples

Adversarial attacks are still a significant challenge for neural networks. Recent efforts have shown that adversarial perturbations typically contain high-frequency features, but the root cause of this phenomenon remains unknown. Inspired by theoretical work on linear convolutional models, we hypothesize that translational symmetry in convolutional operations together with localized kernels implicitly bias the learning of high-frequency features, and that this is one of the main causes of high...
Read more...
Hybrid deep spatial and statistical feature fusion for accurate MRI brain tumor classification

The classification of medical images is crucial in the biomedical field, and despite attempts to address the issue, significant challenges persist. To effectively categorize medical images, collecting and integrating statistical information that accurately describes the image is essential. This study proposes a unique method for feature extraction that combines deep spatial characteristics with handmade statistical features. The approach involves extracting statistical radiomics features using...
Read more...
The emergence of enhanced intelligence in a brain-inspired cognitive architecture

The Causal Cognitive Architecture is a brain-inspired cognitive architecture developed from the hypothesis that the navigation circuits in the ancestors of mammals duplicated to eventually form the neocortex. Thus, millions of neocortical minicolumns are functionally modeled in the architecture as millions of "navigation maps." An investigation of a cognitive architecture based on these navigation maps has previously shown that modest changes in the architecture allow the ready emergence of...
Read more...
An enhanced pattern detection and segmentation of brain tumors in MRI images using deep learning technique

Neuroscience is a swiftly progressing discipline that aims to unravel the intricate workings of the human brain and mind. Brain tumors, ranging from non-cancerous to malignant forms, pose a significant diagnostic challenge due to the presence of more than 100 distinct types. Effective treatment hinges on the precise detection and segmentation of these tumors early. We introduce a cutting-edge deep-learning approach employing a binary convolutional neural network (BCNN) to address this. This...
Read more...
Conditional spatial biased intuitionistic clustering technique for brain MRI image segmentation

In clinical research, it is crucial to segment the magnetic resonance (MR) brain image for studying the internal tissues of the brain. To address this challenge in a sustainable manner, a novel approach has been proposed leveraging the power of unsupervised clustering while integrating conditional spatial properties of the image into intuitionistic clustering technique for segmenting MRI images of brain scans. In the proposed technique, an Intuitionistic-based clustering approach incorporates a...
Read more...
Knowledge graph construction for heart failure using large language models with prompt engineering

INTRODUCTION: Constructing an accurate and comprehensive knowledge graph of specific diseases is critical for practical clinical disease diagnosis and treatment, reasoning and decision support, rehabilitation, and health management. For knowledge graph construction tasks (such as named entity recognition, relation extraction), classical BERT-based methods require a large amount of training data to ensure model performance. However, real-world medical annotation data, especially disease-specific...
Read more...
A spatial map: a propitious choice for constraining the binding problem

Many studies have shown that the human visual system has two major functionally distinct cortical visual pathways: a ventral pathway, thought to be important for object recognition, and a dorsal pathway, thought to be important for spatial cognition. According to our and others previous studies, artificial neural networks with two segregated pathways can determine objects' identities and locations more accurately and efficiently than one-pathway artificial neural networks. In addition, we showed...
Read more...
A three-step, "brute-force" approach toward optimized affine spatial normalization

The first step in spatial normalization of magnetic resonance (MR) images commonly is an affine transformation, which may be vulnerable to image imperfections (such as inhomogeneities or "unusual" heads). Additionally, common software solutions use internal starting estimates to allow for a more efficient computation, which may pose a problem in datasets not conforming to these assumptions (such as those from children). In this technical note, three main questions were addressed: one, does the...
Read more...
Purkinje cell models: past, present and future

The investigation of the dynamics of Purkinje cell (PC) activity is crucial to unravel the role of the cerebellum in motor control, learning and cognitive processes. Within the cerebellar cortex (CC), these neurons receive all the incoming sensory and motor information, transform it and generate the entire cerebellar output. The relatively homogenous and repetitive structure of the CC, common to all vertebrate species, suggests a single computation mechanism shared across all PCs. While PC...
Read more...
SaE-GBLS: an effective self-adaptive evolutionary optimized graph-broad model for EEG-based automatic epileptic seizure detection

INTRODUCTION: Epilepsy is a common neurological condition that affects a large number of individuals worldwide. One of the primary challenges in epilepsy is the accurate and timely detection of seizure. Recently, the graph regularized broad learning system (GBLS) has achieved superior performance improvement with its flat structure and less time-consuming training process compared to deep neural networks. Nevertheless, the number of feature and enhancement nodes in GBLS is predetermined. These...
Read more...
The synaptic correlates of serial position effects in sequential working memory

Sequential working memory (SWM), referring to the temporary storage and manipulation of information in order, plays a fundamental role in brain cognitive functions. The serial position effect refers to the phenomena that recall accuracy of an item is associated to the order of the item being presented. The neural mechanism underpinning the serial position effect remains unclear. The synaptic mechanism of working memory proposes that information is stored as hidden states in the form of...
Read more...
Rényi entropy-complexity causality space: a novel neurocomputational tool for detecting scale-free features in EEG/iEEG data

Scale-free brain activity, linked with learning, the integration of different time scales, and the formation of mental models, is correlated with a metastable cognitive basis. The spectral slope, a key aspect of scale-free dynamics, was proposed as a potential indicator to distinguish between different sleep stages. Studies suggest that brain networks maintain a consistent scale-free structure across wakefulness, anesthesia, and recovery. Although differences in anesthetic sensitivity between...
Read more...
Hippocampal formation-inspired global self-localization: quick recovery from the kidnapped robot problem from an egocentric perspective

It remains difficult for mobile robots to continue accurate self-localization when they are suddenly teleported to a location that is different from their beliefs during navigation. Incorporating insights from neuroscience into developing a spatial cognition model for mobile robots may make it possible to acquire the ability to respond appropriately to changing situations, similar to living organisms. Recent neuroscience research has shown that during teleportation in rat navigation, neural...
Read more...
EEG-based emotion recognition using graph convolutional neural network with dual attention mechanism

EEG-based emotion recognition is becoming crucial in brain-computer interfaces (BCI). Currently, most researches focus on improving accuracy, while neglecting further research on the interpretability of models, we are committed to analyzing the impact of different brain regions and signal frequency bands on emotion generation based on graph structure. Therefore, this paper proposes a method named Dual Attention Mechanism Graph Convolutional Neural Network (DAMGCN). Specifically, we utilize graph...
Read more...
Editorial: Neuromorphic computing: from emerging materials and devices to algorithms and implementation of neural networks inspired by brain neural mechanism

No abstract
Read more...