Dynamics of antiphase bursting modulated by the inhibitory synaptic and hyperpolarization-activated cation currents
Antiphase bursting related to the rhythmic motor behavior exhibits complex dynamics modulated by the inhibitory synaptic current (I(syn)), especially in the presence of the hyperpolarization-activated cation current (I(h)). In the present paper, the dynamics of antiphase bursting modulated by the I(h) and I(syn) is studied in three aspects with a theoretical model. Firstly, the I(syn) and the slow I(h) with strong strength are the identified to be the necessary conditions for the antiphase...
Read more...
Antiphase bursting related to the rhythmic motor behavior exhibits complex dynamics modulated by the inhibitory synaptic current (I(syn)), especially in the presence of the hyperpolarization-activated cation current (I(h)). In the present paper, the dynamics of antiphase bursting modulated by the I(h) and I(syn) is studied in three aspects with a theoretical model. Firstly, the I(syn) and the slow I(h) with strong strength are the identified to be the necessary conditions for the antiphase...
Read more...
Football referee gesture recognition algorithm based on YOLOv8s
Gesture serves as a crucial means of communication between individuals and between humans and machines. In football matches, referees communicate judgment information through gestures. Due to the diversity and complexity of referees' gestures and interference factors, such as the players, spectators, and camera angles, automated football referee gesture recognition (FRGR) has become a challenging task. The existing methods based on visual sensors often cannot provide a satisfactory performance....
Read more...
Gesture serves as a crucial means of communication between individuals and between humans and machines. In football matches, referees communicate judgment information through gestures. Due to the diversity and complexity of referees' gestures and interference factors, such as the players, spectators, and camera angles, automated football referee gesture recognition (FRGR) has become a challenging task. The existing methods based on visual sensors often cannot provide a satisfactory performance....
Read more...
Artificial intelligence approaches for early detection of neurocognitive disorders among older adults
CONCLUSION: The results of this study emphasize the higher accuracy and reliability of the proposed methods in cognitive decline prediction that health practitioners can use for the early detection of dementia. This research can also stipulate substantial direction and supportive intuitions for scholars to enhance their understanding of crucial research, emerging trends, and new developments in future cognitive decline studies.
Read more...
CONCLUSION: The results of this study emphasize the higher accuracy and reliability of the proposed methods in cognitive decline prediction that health practitioners can use for the early detection of dementia. This research can also stipulate substantial direction and supportive intuitions for scholars to enhance their understanding of crucial research, emerging trends, and new developments in future cognitive decline studies.
Read more...
Leveraging neuro-inspired AI accelerator for high-speed computing in 6G networks
The field of wireless communication is currently being pushed to new boundaries with the emergence of 6G technology. This advanced technology requires substantially increased data rates and processing speeds while simultaneously requiring energy-efficient solutions for real-world practicality. In this work, we apply a neuroscience-inspired machine learning model called echo state network (ESN) to the critical task of symbol detection in massive MIMO-OFDM systems, a key technology for 6G...
Read more...
The field of wireless communication is currently being pushed to new boundaries with the emergence of 6G technology. This advanced technology requires substantially increased data rates and processing speeds while simultaneously requiring energy-efficient solutions for real-world practicality. In this work, we apply a neuroscience-inspired machine learning model called echo state network (ESN) to the critical task of symbol detection in massive MIMO-OFDM systems, a key technology for 6G...
Read more...
End-to-end model-based trajectory prediction for ro-ro ship route using dual-attention mechanism
With the rapid increase of economic globalization, the significant expansion of shipping volume has resulted in shipping route congestion, causing the necessity of trajectory prediction for effective service and efficient management. While trajectory prediction can achieve a relatively high level of accuracy, the performance and generalization of prediction models remain critical bottlenecks. Therefore, this article proposes a dual-attention (DA) based end-to-end (E2E) neural network (DAE2ENet)...
Read more...
With the rapid increase of economic globalization, the significant expansion of shipping volume has resulted in shipping route congestion, causing the necessity of trajectory prediction for effective service and efficient management. While trajectory prediction can achieve a relatively high level of accuracy, the performance and generalization of prediction models remain critical bottlenecks. Therefore, this article proposes a dual-attention (DA) based end-to-end (E2E) neural network (DAE2ENet)...
Read more...
Topological features of spike trains in recurrent spiking neural networks that are trained to generate spatiotemporal patterns
In this study, we focus on training recurrent spiking neural networks to generate spatiotemporal patterns in the form of closed two-dimensional trajectories. Spike trains in the trained networks are examined in terms of their dissimilarity using the Victor-Purpura distance. We apply algebraic topology methods to the matrices obtained by rank-ordering the entries of the distance matrices, specifically calculating the persistence barcodes and Betti curves. By comparing the features of different...
Read more...
In this study, we focus on training recurrent spiking neural networks to generate spatiotemporal patterns in the form of closed two-dimensional trajectories. Spike trains in the trained networks are examined in terms of their dissimilarity using the Victor-Purpura distance. We apply algebraic topology methods to the matrices obtained by rank-ordering the entries of the distance matrices, specifically calculating the persistence barcodes and Betti curves. By comparing the features of different...
Read more...
Noise-induced synchrony of two-neuron motifs with asymmetric noise and uneven coupling
Synchronous dynamics play a pivotal role in various cognitive processes. Previous studies extensively investigate noise-induced synchrony in coupled neural oscillators, with a focus on scenarios featuring uniform noise and equal coupling strengths between neurons. However, real-world or experimental settings frequently exhibit heterogeneity, including deviations from uniformity in coupling and noise patterns. This study investigates noise-induced synchrony in a pair of coupled excitable neurons...
Read more...
Synchronous dynamics play a pivotal role in various cognitive processes. Previous studies extensively investigate noise-induced synchrony in coupled neural oscillators, with a focus on scenarios featuring uniform noise and equal coupling strengths between neurons. However, real-world or experimental settings frequently exhibit heterogeneity, including deviations from uniformity in coupling and noise patterns. This study investigates noise-induced synchrony in a pair of coupled excitable neurons...
Read more...
An exploratory computational analysis in mice brain networks of widespread epileptic seizure onset locations along with potential strategies for effective intervention and propagation control
Mean-field models have been developed to replicate key features of epileptic seizure dynamics. However, the precise mechanisms and the role of the brain area responsible for seizure onset and propagation remain incompletely understood. In this study, we employ computational methods within The Virtual Brain framework and the Epileptor model to explore how the location and connectivity of an Epileptogenic Zone (EZ) in a mouse brain are related to focal seizures (seizures that start in one brain...
Read more...
Mean-field models have been developed to replicate key features of epileptic seizure dynamics. However, the precise mechanisms and the role of the brain area responsible for seizure onset and propagation remain incompletely understood. In this study, we employ computational methods within The Virtual Brain framework and the Epileptor model to explore how the location and connectivity of an Epileptogenic Zone (EZ) in a mouse brain are related to focal seizures (seizures that start in one brain...
Read more...
Editorial: Advancing our understanding of the impact of dynamics at different spatiotemporal scales and structure on brain synchronous activity, volume II
No abstract
Read more...
No abstract
Read more...
Neurocomputational mechanisms underlying perception and sentience in the neocortex
The basis for computation in the brain is the quantum threshold of "soliton," which accompanies the ion changes of the action potential, and the refractory membrane at convergences. Here, we provide a logical explanation from the action potential to a neuronal model of the coding and computation of the retina. We also explain how the visual cortex operates through quantum-phase processing. In the small-world network, parallel frequencies collide into definable patterns of distinct objects....
Read more...
The basis for computation in the brain is the quantum threshold of "soliton," which accompanies the ion changes of the action potential, and the refractory membrane at convergences. Here, we provide a logical explanation from the action potential to a neuronal model of the coding and computation of the retina. We also explain how the visual cortex operates through quantum-phase processing. In the small-world network, parallel frequencies collide into definable patterns of distinct objects....
Read more...
The connectivity degree controls the difficulty in reservoir design of random boolean networks
Reservoir Computing (RC) is a paradigm in artificial intelligence where a recurrent neural network (RNN) is used to process temporal data, leveraging the inherent dynamical properties of the reservoir to perform complex computations. In the realm of RC, the excitatory-inhibitory balance b has been shown to be pivotal for driving the dynamics and performance of Echo State Networks (ESN) and, more recently, Random Boolean Network (RBN). However, the relationship between b and other parameters of...
Read more...
Reservoir Computing (RC) is a paradigm in artificial intelligence where a recurrent neural network (RNN) is used to process temporal data, leveraging the inherent dynamical properties of the reservoir to perform complex computations. In the realm of RC, the excitatory-inhibitory balance b has been shown to be pivotal for driving the dynamics and performance of Echo State Networks (ESN) and, more recently, Random Boolean Network (RBN). However, the relationship between b and other parameters of...
Read more...
A novel associative memory model based on semi-tensor product (STP)
A good intelligent learning model is the key to complete recognition of scene information and accurate recognition of specific targets in intelligent unmanned system. This study proposes a new associative memory model based on the semi-tensor product (STP) of matrices, to address the problems of information storage capacity and association. First, some preliminaries are introduced to facilitate modeling, and the problem of information storage capacity in the application of discrete Hopfield...
Read more...
A good intelligent learning model is the key to complete recognition of scene information and accurate recognition of specific targets in intelligent unmanned system. This study proposes a new associative memory model based on the semi-tensor product (STP) of matrices, to address the problems of information storage capacity and association. First, some preliminaries are introduced to facilitate modeling, and the problem of information storage capacity in the application of discrete Hopfield...
Read more...
Artificial cognition vs. artificial intelligence for next-generation autonomous robotic agents
The trend in industrial/service robotics is to develop robots that can cooperate with people, interacting with them in an autonomous, safe and purposive way. These are the fundamental elements characterizing the fourth and the fifth industrial revolutions (4IR, 5IR): the crucial innovation is the adoption of intelligent technologies that can allow the development of cyber-physical systems, similar if not superior to humans. The common wisdom is that intelligence might be provided by AI...
Read more...
The trend in industrial/service robotics is to develop robots that can cooperate with people, interacting with them in an autonomous, safe and purposive way. These are the fundamental elements characterizing the fourth and the fifth industrial revolutions (4IR, 5IR): the crucial innovation is the adoption of intelligent technologies that can allow the development of cyber-physical systems, similar if not superior to humans. The common wisdom is that intelligence might be provided by AI...
Read more...
Identification of Smith-Magenis syndrome cases through an experimental evaluation of machine learning methods
This research work introduces a novel, nonintrusive method for the automatic identification of Smith-Magenis syndrome, traditionally studied through genetic markers. The method utilizes cepstral peak prominence and various machine learning techniques, relying on a single metric computed by the research group. The performance of these techniques is evaluated across two case studies, each employing a unique data preprocessing approach. A proprietary data "windowing" technique is also developed to...
Read more...
This research work introduces a novel, nonintrusive method for the automatic identification of Smith-Magenis syndrome, traditionally studied through genetic markers. The method utilizes cepstral peak prominence and various machine learning techniques, relying on a single metric computed by the research group. The performance of these techniques is evaluated across two case studies, each employing a unique data preprocessing approach. A proprietary data "windowing" technique is also developed to...
Read more...
Novel deep learning framework for detection of epileptic seizures using EEG signals
INTRODUCTION: Epilepsy is a chronic neurological disorder characterized by abnormal electrical activity in the brain, often leading to recurrent seizures. With 50 million people worldwide affected by epilepsy, there is a pressing need for efficient and accurate methods to detect and diagnose seizures. Electroencephalogram (EEG) signals have emerged as a valuable tool in detecting epilepsy and other neurological disorders. Traditionally, the process of analyzing EEG signals for seizure detection...
Read more...
INTRODUCTION: Epilepsy is a chronic neurological disorder characterized by abnormal electrical activity in the brain, often leading to recurrent seizures. With 50 million people worldwide affected by epilepsy, there is a pressing need for efficient and accurate methods to detect and diagnose seizures. Electroencephalogram (EEG) signals have emerged as a valuable tool in detecting epilepsy and other neurological disorders. Traditionally, the process of analyzing EEG signals for seizure detection...
Read more...
Brain tumor segmentation using neuro-technology enabled intelligence-cascaded U-Net model
According to experts in neurology, brain tumours pose a serious risk to human health. The clinical identification and treatment of brain tumours rely heavily on accurate segmentation. The varied sizes, forms, and locations of brain tumours make accurate automated segmentation a formidable obstacle in the field of neuroscience. U-Net, with its computational intelligence and concise design, has lately been the go-to model for fixing medical picture segmentation issues. Problems with restricted...
Read more...
According to experts in neurology, brain tumours pose a serious risk to human health. The clinical identification and treatment of brain tumours rely heavily on accurate segmentation. The varied sizes, forms, and locations of brain tumours make accurate automated segmentation a formidable obstacle in the field of neuroscience. U-Net, with its computational intelligence and concise design, has lately been the go-to model for fixing medical picture segmentation issues. Problems with restricted...
Read more...
Understanding of facial features in face perception: insights from deep convolutional neural networks
INTRODUCTION: Face recognition has been a longstanding subject of interest in the fields of cognitive neuroscience and computer vision research. One key focus has been to understand the relative importance of different facial features in identifying individuals. Previous studies in humans have demonstrated the crucial role of eyebrows in face recognition, potentially even surpassing the importance of the eyes. However, eyebrows are not only vital for face recognition but also play a significant...
Read more...
INTRODUCTION: Face recognition has been a longstanding subject of interest in the fields of cognitive neuroscience and computer vision research. One key focus has been to understand the relative importance of different facial features in identifying individuals. Previous studies in humans have demonstrated the crucial role of eyebrows in face recognition, potentially even surpassing the importance of the eyes. However, eyebrows are not only vital for face recognition but also play a significant...
Read more...
A novel approach for ASD recognition based on graph attention networks
Early detection and diagnosis of Autism Spectrum Disorder (ASD) can significantly improve the quality of life for affected individuals. Identifying ASD based on brain functional connectivity (FC) poses a challenge due to the high heterogeneity of subjects' fMRI data in different sites. Meanwhile, deep learning algorithms show efficacy in ASD identification but lack interpretability. In this paper, a novel approach for ASD recognition is proposed based on graph attention networks. Specifically,...
Read more...
Early detection and diagnosis of Autism Spectrum Disorder (ASD) can significantly improve the quality of life for affected individuals. Identifying ASD based on brain functional connectivity (FC) poses a challenge due to the high heterogeneity of subjects' fMRI data in different sites. Meanwhile, deep learning algorithms show efficacy in ASD identification but lack interpretability. In this paper, a novel approach for ASD recognition is proposed based on graph attention networks. Specifically,...
Read more...
Predictive coding with spiking neurons and feedforward gist signaling
Predictive coding (PC) is an influential theory in neuroscience, which suggests the existence of a cortical architecture that is constantly generating and updating predictive representations of sensory inputs. Owing to its hierarchical and generative nature, PC has inspired many computational models of perception in the literature. However, the biological plausibility of existing models has not been sufficiently explored due to their use of artificial neurons that approximate neural activity...
Read more...
Predictive coding (PC) is an influential theory in neuroscience, which suggests the existence of a cortical architecture that is constantly generating and updating predictive representations of sensory inputs. Owing to its hierarchical and generative nature, PC has inspired many computational models of perception in the literature. However, the biological plausibility of existing models has not been sufficiently explored due to their use of artificial neurons that approximate neural activity...
Read more...
Prediction of emotion distribution of images based on weighted <em>K</em>-nearest neighbor-attention mechanism
Existing methods for classifying image emotions often overlook the subjective impact emotions evoke in observers, focusing primarily on emotion categories. However, this approach falls short in meeting practical needs as it neglects the nuanced emotional responses captured within an image. This study proposes a novel approach employing the weighted closest neighbor algorithm to predict the discrete distribution of emotion in abstract paintings. Initially, emotional features are extracted from...
Read more...
Existing methods for classifying image emotions often overlook the subjective impact emotions evoke in observers, focusing primarily on emotion categories. However, this approach falls short in meeting practical needs as it neglects the nuanced emotional responses captured within an image. This study proposes a novel approach employing the weighted closest neighbor algorithm to predict the discrete distribution of emotion in abstract paintings. Initially, emotional features are extracted from...
Read more...