Формальная философия
513 subscribers
312 photos
291 links
Международная лаборатория логики, лингвистики и формальной философии

https://llfp.hse.ru
Download Telegram
В эту субботу 27 сентября состоится очередное заседание ридинг-семинара «Analytics» — встреча состоится в 17:00 очно в каб. A117 по адресу ул. Старая Басманная, д. 21/4 и онлайн в Zoom . Для чтения был выбран следующий текст: Cappelen, H. (2017). Disagreement in philosophy. The Cambridge companion to philosophical methodology, 56-75. Все дальнейшие подробности по ссылке: https://t.me/+B3UPwOcK5ao0Y2E6
🥰1🌭1
Forwarded from лазер Оккама
Умер Джон Сёрл, один из самых знаменитых философов XX века. Об этом ещё почти никто нигде не знает, включая гугл и твиттер*. В википедии статус изменился несколько часов назад.

Вечером 26 сентября секретарь Сёрла отправил письмо некоторым его друзьям о том, что он умер 17 сентября. Единственный из них, Колин Макгинн, опубликовал его часов 7-12 назад с разрешения секретаря. В письме указывается, что в UC Berkley не будет мемориальных мероприятий, поскольку Сёрла лишили статуса почетного профессора из-за неэтичных действий Сёрла в 2016 году. Это подтвержденные сексуальные домогательства до студенток и общий характер поведения, включая криповые мизогинистические высказывания во время лекций. Следует сказать, что Колин Макгинн сам обвинен в сексуальных домогательствах, которые подтвердились.

Случаи с Сёрлом и Макгинном — самые известные случаи возмездия общества в отношении престижных профессоров, не только в философии, но и, возможно, вообще в науке.

Разделяя личность и результат интеллектуального труда. Сёрл внес вклал в большое количество тем, включая развитие теории речевых актов. По иронии, эти разработки позже повлияли перформативную теорию гендера и феминизм. Также Серл известен в философии сознания, более всего — мысленным экспериментом "Китайская комната" против того, что AI обладает пониманием. Но на мой взгляд самым перспективным его вкладом было создание фундамента для социальной онтологии в книжке "Конструирование социальной реальности".

From: Jennifer Hudin [berkeleysocialontology@gmail.com]
Sent: Friday, September 26, 2025 6:38 PM
Subject: John Searle

Dear Professor…
I am Jennifer Hudin, John Searle’s secretary of 40 years. I am writing to tell you that John died last week on the 17th of September. The last two years of his life were hellish. HIs daughter–in-law, Andrea (Tom’s wife) took him to Tampa in 2024 and put him in a nursing home from which he never returned. She emptied his house in Berkeley and put it on the rental market. And no one was allowed to contact John, even to send him a birthday card on his birthday.
It is for us, those who cared about John, deeply sad.
I know you are aware of his final months at U.C. Berkeley when a female accused him (and me) of Title IX violations. This was extremely hard on John. The news no one knows is that after an extensive and intrusive investigation, these allegations were never found to be true. I was found 100% innocent of all allegations, and John’s emeritus status was removed because the Chancellor at the time, Carol Christ, found the not guilty verdict of the academic senate incorrect in her opinion. and reversed it herself. The two judges in the case both quit and wished me luck in restoring my life.
John never recovered.
There will be no memorial on campus honoring John’s 60+ years of dedication and work at U.C. Berkeley. The Dominican University of Philosophy and Theology in Berkeley is trying to organize a memorial.

John was innocent and falsely accused. To the very end of his time on campus, he held his dignity intact. I know you and he were friends, and I thought you might like to know more details about his life and death. If you wish to know more, I am happy to oblige.

Best wishes,
Jennifer Hudin
Berkeley , CA

*по решению Генпрокуратуры от 24 февраля 2022 запрещен в РФ
😭10👍2
1 октября (среда) в 18:10 состоится заседание научно-исследовательского семинара «From the Logical Point of View»

Тема доклада: Классические и интуиционистские кондициональные логики: метатеория, семантика, теория доказательств​​ (часть 2)

Докладчик: Игорь Зайцев (стажер-исследователь МЛ ЛогЛинФФ)

Аннотация:
Цель двух докладов — представить систематический обзор классических и интуиционистских подходов к построению кондициональной (условной) логики, а также обсудить результаты, полученные в этой области.

В первой части будет дано введение в кондициональную логику как формальный аппарат для анализа рассуждений, использующих как индикативные, так и контрфактические условные выражения. Мы обсудим мотивацию введения кондициональных операторов и отличие их от условных выражений, формализуемых в других неклассических логиках. Будут рассмотрены ключевые системы, предложенные в работах Р. Сталнакера [8], Д. Льюиса [3, 4], Б. Челласа [1] и Д. Ньюта [5], их аксиоматические исчисления, различные типы семантик: семантика сфер, (обобщенная) реляционная семантика, семантика сравнительной возможности и селективно-функциональная семантика [5, 7, 9], — а также доказательства ряда метатеорем.

Во второй части акцент будет сделан на интуиционистских и конструктивных вариантах систем кондициональной логики, развивающихся в последние годы. Будут рассмотрены мотивации отказа от классических презумпций и постановка задачи о формализации контрфактических рассуждений в рамках конструктивного контекста. Подробно будут проанализированы работы Й. Вайса [11, 12], И. Чиарделли, С. Лью [2] и Г.К. Ольховикова [6], посвящённые как семантическим моделям (в частности, модифицированным реляционным семантикам — биреляционным моделям), так и системам аксиоматических исчислений для указанного типа логик. Отдельно будут проанализированы особенности конструктивных кондициональных логик, развиваемых над логикой N4 Д. Нельсона [10] и логикой C, разработанной Х. Вансингом.

Заключительная часть выступлений посвящена собственным результатам автора, включающим построение аксиоматических и субординатных натуральных исчислений для интуиционистских аналогов систем Сталнакера–Льюиса, конструктивной кондициональной коннексивной логики CCCL Вансинга-Унтерхубера [10] с аксимой сериальности, а также введение новых ограничений на кондициональное отношение достижимости в контексте кондициональных биреляционных шкал реляционной семантики. Эти результаты открывают перспективу дальнейшего развития интуиционистской (шире — конструктивной) кондициональной логики.
2
Литература:
[1] Chellas B.F. Basic Conditional Logic // Journal of Philosophical Logic. 1975. Vol. 5. No. 2. P. 133–153.
[2] Ciardelli I., Liu X. Intuitionistic Conditional Logics // Journal of Philosophical Logic. 2020. Vol. 49. No. 4. P. 807–832.
[3] Lewis D. Counterfactuals and Comparative Possibility // Journal of Philosophical Logic. 1973. Vol. 2. No. 4. P. 418–446.
[4] Lewis D. Counterfactuals. Oxford: Blackwell Publishing, 1973.
[5] Nute D., Cross C.B. Conditional Logic // Handbook of Philosophical Logic. Vol. 4. 2nd Edn. / Ed. by D.M. Gabbay, F. Guenthner. Dordrecht: Springer, 2002. P. 1–98.
[6] Olkhovikov G.K. An Intuitionistically Complete System of Basic Intuitionistic Conditional Logic // Journal of Philosophical Logic. 2024. Vol. 53. No. 5. P. 1199–1240.
[7] Segerberg K. Notes on Conditional Logic // Studia Logica. 1989. Vol. 48. No. 2. P. 157–168.
[8] Stalnaker R.C., Thomason R.H. A Semantic Analysis of Conditional Logic // Theoria. 1970. Vol. 36. No. 1. P. 23–42.
[9] Unterhuber M. Possible Worlds Semantics for Indicative and Counterfactual Conditionals? A Formal-Philosophical Inquiry into Chellas-Segerberg Semantics. Frankfurt: Ontos Verlag, 2013.
[10] Wansing H., Unterhuber M. Connexive Conditional Logic. Part 1 // Logic and Logical Philosophy. 2019. Vol. 28. P. 567– 610.
[11] Weiss Y. Basic Intuitionistic Conditional Logic // Journal of Philosophical Logic. 2018. Vol. 48. No. 3. P. 447–469.
[12] Weiss Y. Frontiers of Conditional Logic. PhD Thesis. New York: The City University of New York, 2019.
_________________________

Ждём вас в кабинете А-117 или в Zoom!

Анонс и регистрация: https://llfp.hse.ru/announcements/1085879818.html
4 октября (суббота) в 18:00 (GMT+3) состоится заседание научно-учебного семинара «Математическая логика и теория категорий» (online).

Тема доклада: Actual Causality: A Survey.

Докладчик: Joseph Y. Halpern (Joseph C. Ford Professor in the Computer Science Department at Cornell University).

Аннотация: What does it mean that an event C "actually caused'' event E? The problem of defining actual causation goes beyond mere philosophical speculation.

For example, in many legal arguments, it is precisely what needs to be established in order to determine responsibility. (What exactly was the actual cause of the car accident or the medical problem?) The philosophy literature has been struggling with the problem of defining causality since the days of Hume, in the 1700s. Many of the definitions have been couched in terms of counterfactuals. (C is a cause of E if, had C not happened, then E would not have happened.) In 2001, Judea Pearl and I introduced a new definition of actual cause, using Pearl's notion of structural equations to model counterfactuals. The definition has been revised twice since then, extended to deal with notions like "responsibility" and "blame", and applied in databases and program verification. I survey the last 15 years of work here, including joint work with Judea Pearl, Hana Chockler, and Chris Hitchcock. The talk will be completely self-contained.
_________________________

Ждём вас в кабинете А-117 или в Zoom!

Анонс и регистрация: https://llfp.hse.ru/announcements/1087904123.html
4👍1
#матлог #учёба #спецкурс

В.Е.Плиско прочитает спецкурс «Метод резолюций». Это полугодовой спецкурс по выбору кафедры.

Первая лекция: 3 октября

Место проведения: 425 аудитория, 2 ГУМ

Время проведения: пятница 18:30–20:05

Аннотация.
В спецкурсе детально излагается так называемый метод резолюций, используемый при построении систем автоматического доказательства теорем. Содержание: логика первого порядка; теорема Эрбрана; метод резолюций для логики высказываний; алгоритм унификации; метод резолюций для логики предикатов; уточнения исчисления резолюций; применения метода резолюций в математической логике. Предварительных знаний из области математической логики не требуется.

Литература:
В.Н.Крупский, В.Е.Плиско. Математическая логика и теория алгоритмов. М.: Академия, 2013. Глава 14.
Ч.Чень, Р.Ли. Математическая логика и автоматическое доказательство теорем. М.: Наука, 1983.
A.Leitsch. The Resolution Calculus. Springer, 1997.

ВК
#матлог #учёба #спецсеминар

Семинар «Вероятностные и субструктурные логические системы» (www.mathnet.ru/conf2533) под руководством С.Л. Кузнецова (homepage.mi-ras.ru/~sk/) и С.О. Сперанского (homepage.mi-ras.ru/~speranski/).

Время: 2 октября (четверг), начало — в 16:00
Место: МИАН, ком. 530 + Контур.Толк

К.А. Ковалёв (МИАН), Л.В. Дворкин (МГУ)

О (не)разрешимости первопорядковых теорий метрических, векторных и гильбертовых пространств

Краткая аннотация доклада:

Будет показано, что для теорий нормированных и банаховых пространств справедлива нижняя оценка \Pi^2_1, т.е. соответствующие теории являются \Pi^2_1-трудными. Также будет показано, что теории гильбертовых и евклидовых пространств сводятся к теории вещественно замкнутых полей и, следовательно, разрешимы.

[ Доклад сделает К.А. Ковалёв. ]

Общая аннотация серии:

В рамках четырёх запланированных заседаний семинара мы намерены детально изучить работу

R.M. Solovay, R.D. Arthan, J. Harrison. Some new results on decidability for elementary algebra and geometry. Annals of Pure and Applied Logic 163(12), 1765–1802, 2012.
https://doi.org/10.1016/j.apal.2012.04.003

В центре внимания окажутся вопросы (не)разрешимости первопорядковых теорий метрических, вещественных векторных, нормированных, банаховых, предгильбертовых и гильбертовых пространств. Данные теории естественным образом выражаются в двухсортном языке, где один сорт отвечает за скаляры, а другой — за векторы.

Оказывается, что проверку выполнимости первопорядковых формул в векторных, предгильбертовых и гильбертовых пространствах можно свести к проверке выполнимости в поле вещественных чисел. Последняя, как известно, разрешима в силу теоремы Зайденберга–Тарского.

При переходе к метрическим, нормированным и банаховым пространствам ситуация кардинально меняется: здесь становится возможной интерпретация арифметики второго порядка, что влечёт за собой неразрешимость и даже неарифметичность теорий этих пространств. Однако, несмотря на общую неразрешимость, существуют разрешимые фрагменты. В частности, чисто универсальный и чисто экзистенциальный фрагменты теории нормированных пространств, а также универсально-экзистенциальный фрагмент теории метрических пространств разрешимы.

Мы планируем рассмотреть доказательства упомянутых результатов. Предполагается, что слушатели обладают базовыми знаниями о первопорядковых теориях и их моделях.

Если планируете посетить заседание (очно или онлайн через Контур.Толк), пожалуйста, зарегистрируйтесь по ссылке в верхней части страницы семинара:
https://www.mathnet.ru/conf2533

ВК
#матлог #учёба #спецсеминар

Семинар "Вычислимость и неклассические логики" работает по пятницам с 16.45 в аудитории 425.

3 октября 2025 г.

Г. Г. Черевиченко
"Малоизвестные формализации логики высказываний"

Предполагается рассмотреть таблицы Бета и диалоги Лоренцена. Хочется иметь исчисление, в котором удобно искать вывод формулы "снизу вверх", причём получаться должен или вывод, или контрмодель (Крипке, если логика интуиционистская). Такие исчисления есть.

ВК
👍1
#матлог #учёба #семинар #не_мехмат #ВШЭ

Уважаемые коллеги, приглашаем вас принять участие в заседании научного семинара "Современные проблемы математической логики" в ВШЭ.

Семинар пройдет в очном формате с одновременной трансляцией
на Математическом факультете ВШЭ, в аудитории 109 (ул. Усачева, д. 6). Мы надеемся, что получится транслировать доклад в zoom, но лучше приходите очно.
Если вам нужен пропуск в здание матфака, пришлите ваши ФИО и просьбу о пропуске на почту kudinov.andrey@gmail.com.

Дата и время: 03.10.2025 (пятница) в 16:20

Докладчик: Анастасия Оноприенко

Название: Интуиционистская логика

Аннотация:
На рубеже XIX-XX веков в существующей на тот момент теории множеств было обнаружено большое число парадоксов.
Так как теория множеств мыслилась как попытка формализовать всю имеющуюся математику, это привело к кризису оснований математики.
Брауэр видел в качестве возможного варианта разрешения этой проблемы пересмотр смысла логических связок и кванторов и отказ от рассмотрения абстрактных объектов, существующих лишь в нашей, порой противоречивой, фантазии.
В докладе будет определена интуиционистская логика, рассмотрена её семантика Крипке, некоторые следствия из теоремы о полноте (не конечнозначность интуиционистской логики, теорема Гливенко), а также перевод интуиционистской логики высказываний в модальную логику S4.
В конце будет сделан краткий обзор некоторых более свежих результатов и открытых вопросов в этой области.

ВК
8 октября (среда) в 18:10 состоится очередное заседание теоретического семинара «Формальная философия».

Тема доклада: П.Ф. Стросон и инструменталистский подход к моральной ответственности.

Докладчик: Арсений Савелов (аспирант кафедры истории зарубежной философии, философского факультета МГУ им. М.В. Ломоносова).

Аннотация: Обычно считается, что П.Ф. Стросон (1919-2006) в своей работе «Свобода и обида» (1962) стремился показать: консеквенциалистские подходы к моральной ответственности во многом проваливаются. Так, утилитаристы предлагают неправильную психологию моральной ответственности. Люди, когда реагируют на действия других, не руководствуются проспективными соображениями, соображениями полезности. Более того, согласно Стросону, люди не могут принять такой способ мысли в качестве всеобъемлющего. В литературе эти соображения Стросона называют аргументом неправильных оснований или тезисом Стросона. В общем виде его можно выразить так: неморальные основания не могут обосновывать моральные утверждения (в нашем случае утверждения, что в той или иной ситуации было бы уместно порицать или хвалить). Долгое время считалось, что этот аргумент полностью исключил консеквенциалистов из дискуссии о моральной ответственности, однако сегодня некоторые исследователи начали предлагать такой способ чтения Стросона, который не ставит консеквенциалистов в неудобное положение. Более того, некоторые исследователи выдвинули предположение, что Стросон сам мог бы быть консеквенциалистом. Подобные интерпретации предлагают двухуровневую теорию моральной ответственности, строящуюся на том, что агент, непосредственно участвуя в межличностных взаимодействиях, не занимается подсчетом выгод и потерь для себя. Его способ принятия решений «в поле» иной: он просто реагирует на качество воли других индивидов. На другом же уровне, принимая объективную точку зрения, мы можем рефлексировать над этим способом принятия решений. Эта рефлексия во многом должна разворачиваться в консеквенциалистском ключе. Согласно консеквенциалистским интерпретациям Стросона, философ должен определять, какой способ мыслить внутри межличностного взаимодействия мы должны принимать. Исходя из консеквенциалистских рассуждений, мы можем менять наш способ принятия решений и, как следствие, можем менять наши установки и практики. В своем докладе я реконструирую аргумент неправильных оснований, после чего, в деталях покажу какие ходы предпринимают интерпретаторы для того, чтобы согласовать Стросона с консеквенциализмом. В заключении я покажу, что такой способ прочтения «Свободы и обиды» скорее проваливается как историко-философская интерпретация. Также я продемонстрирую, что если смотреть на данную теорию исключительно как на подход к морально ответственности, то подобные двухуровневые теории сталкиваются со значительными сложностями.
_____________________

Ждём вас в кабинете А-117 или в Zoom!

Анонс и регистрация: https://llfp.hse.ru/announcements/1089845067.html
2
#матлог #спецсеминар #нпммвя

В четверг 9 октября 14:00 в Математическом институте им. В.А. Стеклова РАН состоится заседание семинара "Некоторые применения математических методов в языкознании".

Где: Математический институт им. В.А. Стеклова РАН, ул. Губкина, д. 8, ауд. 110
Для прохода потребуется студенческий/пропуск любой образовательной или научной организации либо паспорт.
Ссылка для регистрации: https://forms.gle/TybWEje5GQ1AySLP9 (зарегистрировавшимся придет ссылка для онлайн-подключения).

Кто: Даниил Борисович Тискин (НИУ ВШЭ С.-Петербург, ИЛИ РАН)
Тема: Некоторые параллели между фокусом и модальностью

Аннотация:
Модальность — семантическое поле естественного языка, ответственное за его способность описывать неактуальные, альтернативные действительности ситуации. С другой стороны, фокус традиционно связывают со способностью семантики обращаться к множествам альтернативных друг другу значений (Rooth 1985 и др.): например, предложение Только ПЕТЯ пришёл предполагает, что Петя пришёл, и отрицает, что пришли альтернативные Пете индивиды.
И модальность, и фокус связаны с операторами (модальные наречия, глаголы мыслительной деятельности vs. фокусные частицы), имеющими сферу действия и переключающими интерпретацию в другой режим (в другой возможный мир vs. в альтернативные означивания фокусных переменных, Kratzer 1991). Это порождает ряд более или менее очевидных сходств и нетривиальных различий между ними, набор которых отчасти зависит от выбранной формализации каждого из явлений. В числе других параллелей в докладе будет рассмотрена формализация синтаксиса и семантики конструкций с фокусом, позволяющая объяснить поведение семантических признаков т. н. «связанных дейктиков» (fake indexicals), как her в предложении Only MARY did her homework, которое может означать, что другие, помимо Мэри и вне зависимости от пола, не сделали свои уроки.

Страница семинара: http://tipl.philol.msu.ru/index.php/science/seminars/npmmvia

ВК
1
#матлог #учёба #просеминар

💥В среду 8 октября состоится очередное занятие просеминара по математической логике и информатике.

Тема: "Интуиционистская логика" (Андрей Ерёмин, студент философского факультета МГУ).
Аннотация. В конце XIX — начале XX века в наивной теории множеств был обнаружен ряд противоречий. Это привело к необходимости пересмотра имеющихся оснований математики с целью найти новые: строгие, убедительные и свободные от противоречий.
Один из подходов, называемый интуиционизмом, был предложен математиком Л. Э. Я. Брауэром. Согласно Брауэру, математика есть в первую очередь творческая деятельность, разворачивающаяся в разуме математиков. Поэтому, дабы избежать парадоксов, из рассмотрения следует исключить объекты, которые принципиально невозможно сконструировать в человеческом уме. А это, в свою очередь, ведет к пересмотру ряда логических принципов, влекущих так называемые «теоремы чистого существования», и самого понятия математической истины.
Ученик Брауэра А. Гейтинг формализовал предлагаемые Брауэром модификации классической логики. Полученная формальная система активно изучается; были получены глубокие результаты, связанные с другими областями математической логики.
На просеминаре мы разберем основные сюжеты и определения, связанные с её пропозициональным вариантом: интуиционистской логикой высказываний.
Можно заранее порешать задачи (прикреплены к посту).

Просеминар проходит по средам в 15:00-16:35 в аудитории 406 (2 гуманитарный корпус).
По просьбам участников создан чат просеминара в телеграме:
https://t.me/+8lzSUf8ghLAzMjRi
Информацию о просеминаре можно найти на странице logic.math.msu.ru/proseminar/.
К сожалению, сайт кафедры сейчас работает нестабильно, поэтому ориентируйтесь на информацию в группе кафедры ВК или в телеграм-канале по хештегу #просеминар

📝 intuitionistic_logic2025.pdf

ВК
🔥2
#матлог #спецсеминар #не_мехмат #МФТИ

Уважаемые коллеги, приглашаем вас на логический семинар лаборатории им. Манина Высшей школы современной математики МФТИ (ВШМ).
Страница семинара: https://www.mathnet.ru/rus/conf2559

Семинар пройдет в среду 8 октября в 14:00.

Место проведения:
МФТИ, Административный корпус, ауд. 322, Первомайская ул. д.7, Долгопрудный.
Чтобы пройти на семинар, если у вас нет пропуска в МФТИ, достаточно сказать, что вы идёте на семинар ВШМ и предъявить паспорт.

Также планируется интернет-трансляция, для получения ссылки пишите на почту kudinov.andrey@gmail.com.

Докладчик: В.Б. Шехтман

Название: Топологическая полнота и полнота по Крипке для суперинтуиционистских логик.

Аннотация.
В 1974 г. А.В. Кузнецов сформулировал несколько проблем о полноте суперинтуиционистских логик высказываний в различных семантиках. Часть этих проблем впоследствии была решена.
В докладе обсуждается одна из них: соотношение полноты по Крипке и топологической полноты. Строится явный пример конечно аксиоматизируемой логики, для которой пополнение в топологической семантике неполно по Крипке.

ВК
#матлог #учёба #семинар #не_мехмат #ВШЭ

Уважаемые коллеги, приглашаем вас принять участие в заседании научного семинара "Современные проблемы математической логики" в ВШЭ.

Семинар пройдет в очном формате с одновременной трансляцией
на Математическом факультете ВШЭ, в аудитории 109 (ул. Усачева, д. 6). В этот раз мы точно будем транслировать доклад в zoom, но лучше приходите очно.
Если вам нужен пропуск в здание матфака, пришлите ваши ФИО и просьбу о пропуске на почту kudinov.andrey@gmail.com.

Дата и время: 10.10.2025 в 16:20

Докладчик: Кирилл Александрóв

Название: Введение в модальную логику

Аннотация

Мы продолжим изучение неклассических логик, а именно перейдём к модальной логике, которая была упомянута в конце прошлого заседания (https://www.youtube.com/watch?v=LNIV5WAw-WY). Модальная логика отличается от классической тем, что к возможным вариантам построения формулы помимо стандартных (конъюнкция, дизъюнкция, импликация, отрицание) добавляется "модальность", которую в зависимости от контекста можно понимать по-разному: "необходимо", "доказуемо", "известно" и др. Обсудим модальное исчисление, семантику Крипке для модальных логик, теорему о полноте, рассмотрим различные примеры модальных логик, взаимосвязь модальных формул и свойств шкал Крипке, которые они задают. Если останется время, обсудим вопросы алгоритмической сложности для модальных логик.

ВК
👍21🔥1
18 октября (суббота) в 18:00 (GMT+3) состоится заседание научно-учебного семинара «Математическая логика и теория категорий» (online).

Тема доклада: Three applications of Zermelo's theorem on part-whole.

Докладчик: Paolo Mancosu (Willis S. and Marion Slusser Professor of Philosophy, Department of Philosophy, UC Berkeley).

Аннотация: The aim of the presentation is to give a general overview of the application of a result by Ernst Zermelo to three very different areas of investigation: abstraction principles in neologicism, the axiom of choice in second-order logic, and regularity properties in probability theory. The talk is based on three articles that have recently appeared (see bibliography).

Bibliography:
2019, (with Benjamin Siskind), "Neologicist Foundations: Inconsistent abstraction principles and part-whole", in Mras, Gabriele M.; Weingartner, Paul; Ritter, Bernhard (eds.), Philosophy of Logic and Mathematics: Proceedings of the 41st International Wittgenstein Symposium. De Gruyter, Berlin, Munich, Boston, 2019, pp. 215–248.
2023, (with Benjamin Siskind and Stewart Shapiro), "A note on choice principles in second-order logic", The Review of Symbolic Logic, 16(2), pp. 339-350.
2024, (with Guillaume Massas), "Totality, Regularity and Cardinality in Probability Theory", Philosophy of Science, 91, 721–740.
_________________________

Ждём вас в кабинете А-117 или в Zoom!

Анонс и регистрация: https://llfp.hse.ru/announcements/1087905862.html
2👍1
#матлог #учёба #просеминар

💥В среду 15 октября состоится очередное занятие просеминара по математической логике и информатике.

Тема: "Интуиционистская логика (продолжение)" (Андрей Ерёмин, студент философского факультета МГУ).
Аннотация. В конце XIX — начале XX века в наивной теории множеств был обнаружен ряд противоречий. Это привело к необходимости пересмотра имеющихся оснований математики с целью найти новые: строгие, убедительные и свободные от противоречий.
Один из подходов, называемый интуиционизмом, был предложен математиком Л. Э. Я. Брауэром. Согласно Брауэру, математика есть в первую очередь творческая деятельность, разворачивающаяся в разуме математиков. Поэтому, дабы избежать парадоксов, из рассмотрения следует исключить объекты, которые принципиально невозможно сконструировать в человеческом уме. А это, в свою очередь, ведет к пересмотру ряда логических принципов, влекущих так называемые «теоремы чистого существования», и самого понятия математической истины.
Ученик Брауэра А. Гейтинг формализовал предлагаемые Брауэром модификации классической логики. Полученная формальная система активно изучается; были получены глубокие результаты, связанные с другими областями математической логики.
На просеминаре мы разберем основные сюжеты и определения, связанные с её пропозициональным вариантом: интуиционистской логикой высказываний.
Можно заранее порешать задачи (прикреплены к посту).

Просеминар проходит по средам в 15:00-16:35 в аудитории 406 (2 гуманитарный корпус).
По просьбам участников создан чат просеминара в телеграме:
https://t.me/+8lzSUf8ghLAzMjRi
Информацию о просеминаре можно найти на странице logic.math.msu.ru/proseminar/.
К сожалению, сайт кафедры сейчас работает нестабильно, поэтому ориентируйтесь на информацию в группе кафедры ВК или в телеграм-канале по хештегу #просеминар

📝 intuitionistic_logic2025.pdf

ВК
2