365. Несколько ящиков вместе весят 10 тонн, причём каждый весит не больше 1 тонны. Какого наименьшего числа трёхтонок заведомо достаточно, чтобы увезти весь груз?
#олмат
#оценкаплюспример
#олмат
#оценкаплюспример
May 28, 2018
May 30, 2018
367. В школе организовали n (n > 1) кружков. Оказалось, что для любых двух школьников есть кружок, в который ходит ровно один из них, а для любых трёх школьников есть либо кружок, в который ходят все трое, либо кружок, в который не ходит ни один из них. Какое наибольшее количество учеников может быть в этой школе?
#олмат #текстовыезадачи
#олмат #текстовыезадачи
June 3, 2018
368. Семья ночью подошла к мосту. Арья может перейти его за 1 минуту, Джон за 2, Санса — за 5, а Ходор — за 10 минут. У них есть один фонарик. Мост выдерживает только двоих. Как им перейти мост за 17 минут? (Если переходят двое, то они идут с меньшей из их скоростей. Двигаться по мосту без фонарика нельзя. Светить издали нельзя. Носить друг друга на руках нельзя. Кидаться фонариком нельзя.)
#олмат
#классика
#олмат
#классика
June 5, 2018
June 6, 2018
370. Есть сетка из бикфордова шнура, образующая поле 5×5 клеток, причём каждая сторона каждой клетки горит ровно 1 минуту. В каком наименьшем количестве точек можно поджечь сетку, чтобы она сгорела за 1 минуту?
#олмат
#оценкаплюспример
#олмат
#оценкаплюспример
June 7, 2018
371. На каждой половинке кости домино указано число очков – от 0 до некоторого N, большего 1. Все возможные пары чисел встречаются по одному разу (включая «дубли» – пары одинаковых чисел). Все кости домино выложены в цепочку, причем на прилегающих половинках соседних костей стоят одинаковые числа. Могут ли на концах цепочки стоять различные числа?
#олмат
#комбинаторика
#олмат
#комбинаторика
June 8, 2018
372. Имеются 2 красных, 2 зелёных и 2 синих шара. Известно, что есть один легкий и один тяжелый шар каждого цвета, причем все тяжелые и все легкие шары весят одинаково. За какое наименьшее число взвешиваний на чашечные весах без гирь можно найти все легкие и все тяжелые шары?
#олмат
#взвешивания
#олмат
#взвешивания
June 10, 2018
June 11, 2018
374. В стране Далекой провинция называется крупной, если в ней живет более 7% жителей этой страны. Известно, что для каждой крупной провинции найдутся две провинции с меньшим населением такие, что их суммарное население больше, чем у этой крупной провинции. Какое наименьшее число провинций может быть в стране Далекой?
#олмат
#оценкаплюспример
#олмат
#оценкаплюспример
June 26, 2018
July 5, 2018
July 6, 2018
377. На доске выписано несколько составных двузначных чисел. Известно, что любые два числа взаимно просты. Какое наибольшее количество чисел могло быть выписано?
#олмат
#оценкаплюспример
#олмат
#оценкаплюспример
July 7, 2018
July 12, 2018
379. Можно ли записать в строчку семь чисел так, чтобы сумма любых двух соседних была отрицательной, а сумма всех семи — положительной?
#олмат
#олмат
July 15, 2018
380. 100 гирек выставили в ряд. Известно, что веса соседних гирек отличаются ровно на 1 грамм. Докажите, что можно разложить все гирьки на две чаши весов так, чтобы было равновесие.
#олмат
#бессмертнаяклассика
#взвешивания
#олмат
#бессмертнаяклассика
#взвешивания
July 16, 2018
July 17, 2018
382. Пять человек играют в мафию: два мирных, две мафии и комиссар. Мафии знают друг друга, комиссар вычислил всех, а мирные знают только свои роли. Известно, что мафии всегда лгут, а мирные и комиссар всегда говорят правду. Далее состоялся следующий полилог:
А: Я знаю кто Б.
Б: Я знаю кто комиссар.
В: Я знаю кто Б.
Г: Я знаю кто Д.
Определите кто кем является.
#олмат
#логика
А: Я знаю кто Б.
Б: Я знаю кто комиссар.
В: Я знаю кто Б.
Г: Я знаю кто Д.
Определите кто кем является.
#олмат
#логика
July 19, 2018
383. Ортогональными проекциями некоторого тела на каждую из двух данных плоскостей являются круги. Докажите, что диаметры этих кругов совпадают.
#олмат
#геометрия
#стереометрия
#олмат
#геометрия
#стереометрия
July 20, 2018
July 21, 2018