Ежидзе
1.52K subscribers
15 photos
153 links
Олимпиадная математика с юмором!

Авторы канала:
Петров Сергей - @Chuckchaness
Жуковский Никита - @tavukchorbasi

Чат канала - @ezhidze_chat
Присылайте нам свои задачи - @ezhidze_problems_bot
Download Telegram
​​365. Несколько ящиков вместе весят 10 тонн, причём каждый весит не больше 1 тонны. Какого наименьшего числа трёхтонок заведомо достаточно, чтобы увезти весь груз?

#олмат
#оценкаплюспример
366. В волшебной стране Лариколяндия 100 городов, некоторые из которых соединены авиалиниями. Известно, что из каждого города выходит более 90 авиалиний. Докажите, что найдутся 12 городов, попарно соединенных авиалиниями.

#олмат
#графы
​​367. В школе организовали n (n > 1) кружков. Оказалось, что для любых двух школьников есть кружок, в который ходит ровно один из них, а для любых трёх школьников есть либо кружок, в который ходят все трое, либо кружок, в который не ходит ни один из них. Какое наибольшее количество учеников может быть в этой школе?

#олмат #текстовыезадачи
​​368. Семья ночью подошла к мосту. Арья может перейти его за 1 минуту, Джон за 2, Санса — за 5, а Ходор — за 10 минут. У них есть один фонарик. Мост выдерживает только двоих. Как им перейти мост за 17 минут? (Если переходят двое, то они идут с меньшей из их скоростей. Двигаться по мосту без фонарика нельзя. Светить издали нельзя. Носить друг друга на руках нельзя. Кидаться фонариком нельзя.)

#олмат
#классика
​​369. Лежит кучка в 10 миллионов спичек. Двое играют в следующую игру. Ходят по очереди. За один ход играющий может взять из кучки спички в количестве pⁿ, где p – простое число, n = 0, 1, 2, 3, ... . Выигрывает тот, кто берёт последнюю спичку. Кто выиграет при правильной игре?

#олмат #матигры
370. Есть сетка из бикфордова шнура, образующая поле 5×5 клеток, причём каждая сторона каждой клетки горит ровно 1 минуту. В каком наименьшем количестве точек можно поджечь сетку, чтобы она сгорела за 1 минуту?

#олмат
#оценкаплюспример
371. На каждой половинке кости домино указано число очков – от 0 до некоторого N, большего 1. Все возможные пары чисел встречаются по одному разу (включая «дубли» – пары одинаковых чисел). Все кости домино выложены в цепочку, причем на прилегающих половинках соседних костей стоят одинаковые числа. Могут ли на концах цепочки стоять различные числа?

#олмат
#комбинаторика
372. Имеются 2 красных, 2 зелёных и 2 синих шара. Известно, что есть один легкий и один тяжелый шар каждого цвета, причем все тяжелые и все легкие шары весят одинаково. За какое наименьшее число взвешиваний на чашечные весах без гирь можно найти все легкие и все тяжелые шары?

#олмат
#взвешивания
373. Про нечетную непрерывную функцию f(x) известно, что для любого x выполнено f(2x) = 2f(x). Верно ли, что функция f(x) линейная?

#матан
#шад
374. В стране Далекой провинция называется крупной, если в ней живет более 7% жителей этой страны. Известно, что для каждой крупной провинции найдутся две провинции с меньшим населением такие, что их суммарное население больше, чем у этой крупной провинции. Какое наименьшее число провинций может быть в стране Далекой?

#олмат
#оценкаплюспример
375. Существует ли четырехугольник, который можно одной прямой разбить на прямоугольный треугольник и прямоугольник, а другой прямой – на прямоугольный и равносторонний треугольники?

#олмат
#геом
376. В зоопарке живёт 10 слонов. Известно, что любые 4 слона весят в сумме больше, чем любые 3. Верно ли, что любые 5 слонов весят в сумме больше, чем любые 4?

#олмат
377. На доске выписано несколько составных двузначных чисел. Известно, что любые два числа взаимно просты. Какое наибольшее количество чисел могло быть выписано?

#олмат
#оценкаплюспример
378. Есть обычная монетка. Вероятность того, что она падает на конкретную грань -- 50%. Как с помощью нее получить событие, вероятность которого ⅓?

#олмат
#теорвер
379. Можно ли записать в строчку семь чисел так, чтобы сумма любых двух соседних была отрицательной, а сумма всех семи — положительной?

#олмат
380. 100 гирек выставили в ряд. Известно, что веса соседних гирек отличаются ровно на 1 грамм. Докажите, что можно разложить все гирьки на две чаши весов так, чтобы было равновесие.

#олмат
#бессмертнаяклассика
#взвешивания
381. Любое ли чётное натуральное число можно представить в виде суммы двух натуральных слагаемых, каждое из которых состоит из нечётных цифр?

#олмат
#тч
​​382. Пять человек играют в мафию: два мирных, две мафии и комиссар. Мафии знают друг друга, комиссар вычислил всех, а мирные знают только свои роли. Известно, что мафии всегда лгут, а мирные и комиссар всегда говорят правду. Далее состоялся следующий полилог:

А: Я знаю кто Б.
Б: Я знаю кто комиссар.
В: Я знаю кто Б.
Г: Я знаю кто Д.

Определите кто кем является.

#олмат
#логика
383. Ортогональными проекциями некоторого тела на каждую из двух данных плоскостей являются круги. Докажите, что диаметры этих кругов совпадают.

#олмат
#геометрия
#стереометрия
384. На окружности выбраны случайно n точек. Найдите вероятность того, что они все лежат на одной полуокружности.

#олмат
#тервер
385. В некотором году три месяца подряд содержали по 4 воскресенья. Докажите, что один из этих месяцев — февраль.

#олмат