341. Крош хочет порадовать Ёжика и вставить в торт к его дню рождения свечки в форме некоторого выражения, значение которого есть натуральное число меньшее 100 (возраст Ёжика). Более того, он собирается использовать одни и те же цифры каждый год. Также у Кроша есть свечка в виде знака "×". Необходимо, чтобы каждый год Крош смог составлять возраст Ёжика с помощью этих свечек. Какое наименьшее количество свечек-цифр ему для этого потребуется?
#олмат
#оценкаплюспример
#олмат
#оценкаплюспример
Ещё раз напоминаем про наш новый канал, посвященный вопросам ЧГК. Если вы с нами, потому что умеете по настоящему ценить красоту таких вопросов, то обязательно подписывайтесь: @ezhidze_chgk
346. На небе бесконечное число звёзд. Астроном приписал каждой звезде пару натуральных чисел, выражающую яркость и размер. При этом каждые две звезды отличаются хотя бы в одном параметре. Докажите, что найдутся две звезды, первая из которых не меньше второй как по яркости, так и по размеру.
#олмат
#текстовыезадачи
#олмат
#текстовыезадачи
348. В каплю воды, где находились 1000 бактерий, посадили один вирус. После этого каждую минуту стало происходить следующее: каждый вирус уничтожал по одной бактерии, после чего каждая бактерия делилась на две бактерии, а каждый вирус — на два вируса. Верно ли, что через некоторое время не останется ни одной бактерии?
#олмат
#8класс
#олмат
#8класс
351. Из середины каждой стороны остроугольного треугольника опущены перпендикуляры на две другие стороны. Докажите, что площадь шестиугольника, ограниченного этими перпендикулярами, равна половине площади треугольника.
#олмат
#геометрия
#олмат
#геометрия
352. Пусть Ezh — конечное множество различных чисел. Известно, что среди любых трех его элементов найдутся два, сумма которых принадлежит Ezh. Какое наибольшее число элементов может быть в Ezh?
#олмат
#оценкаплюспример
#олмат
#оценкаплюспример
354. У Тайлера Джозефа есть три палочки. Если из них нельзя сложить треугольник, то Тайлер укорачивает самую длинную из палочек на сумму длин двух других. Если длина палочки не обратилась в нуль, и треугольник снова нельзя сложить, то Тайлер повторяет операцию. Может ли этот процесс продолжаться бесконечно?
#олмат
#9класс
#олмат
#9класс
356. Докажите, что на плоскости нельзя разместить более чем счетное множество непересекающихся восьмерок (восьмерки не обязательно одинаковые, не обязательно ориентированы одинаково и не обязательно симметричны).
#олмат
#теориямножеств
#олмат
#теориямножеств