289. (Окружность девяти точек) Докажите, что середины сторон произвольного треугольника, основания высот, и середины трёх отрезков, соединяющих его вершины с ортоцентром, лежат на одной окружности, и что центр этой окружности находится в середине отрезка, соединяющего ортоцентр с центром описанной окружности.
#олмат
#геом
#бессмертнаяклассика
#олмат
#геом
#бессмертнаяклассика
301. Придумайте 10 различных натуральных чисел, сумма которых делится на каждое из них.
#олмат
#делимость
#олмат
#делимость
305. У каждого марсианина по три руки и несколько антенн. Каждый марсианин взял за руки трех других (так, что все руки оказались заняты). Оказалось, что у любых двух марсиан, взявшихся за руки, количество антенн отличается ровно в 6 раз. Может ли суммарное количество антенн быть 2018?
#олмат
#графы
#тч
#олмат
#графы
#тч
307. На доске выписаны цифры 9 8 7 6 5 4 3 2 1. Вставим между некоторыми из них «+» так, чтобы сумма оказалась трехзначным числом. Какое наибольшее число может получиться?
#олмат
#оценкаплюспример
#олмат
#оценкаплюспример
309. Путешественник выходит из своего родного города и отправляется в самый дальний от него город страны, затем — в город, самый дальний от этого города, и так далее. Расстояния между всеми городами различны. Докажите, что если путешественник не вернулся в родной город после второго перехода, то он никогда в него не вернётся.
#олмат
#путешественники
#олмат
#путешественники