Epython Lab
6.77K subscribers
633 photos
30 videos
103 files
1.16K links
Welcome to Epython Lab, where you can get resources to learn, one-on-one trainings on machine learning, business analytics, and Python, and solutions for business problems.

Buy ads: https://telega.io/c/epythonlab
Download Telegram
Code Testing is the most crucial skill you should master

CI/CD

How to test your Python function before deployment

https://youtu.be/0heKg51lR0c
2👍1
Forwarded from Future Data Science(FDS)
4
📢Day 11/100: Integrating AI and ML in Credit Scoring

AI and machine learning are at the heart of my credit scoring model, but they require careful application. 🤖

Today’s focus:

1️⃣ Modeling approaches: Exploring supervised learning techniques like Gradient Boosting for risk prediction.

2️⃣ Bias mitigation: Addressing imbalances in transactional data to ensure fair outcomes.

3️⃣ Explainability: Building a model that’s transparent and interpretable to meet regulatory standards.

💡 Coming soon: Detailed performance metrics and insights from my initial experiments with AI-powered credit scoring!

#AI #MachineLearning #CreditScoring #ExplainableAI #FintechEthiopia
📢Day 12/100: Comparing Machine Learning Models

Today, I compared the performance of multiple machine learning models for credit scoring:

1️⃣ Logistic Regression: Simple and interpretable but less effective with complex data.

2️⃣ Random Forest: Excellent for feature importance but slower for large datasets.

3️⃣ Gradient Boosting: Best overall performance with high accuracy and recall.

💡 Finding: Gradient Boosting stood out with an ROC-AUC of 0.97.

💡 Question: Do you prioritize interpretability or accuracy when selecting a model for financial applications?

#MachineLearning #ModelSelection #CreditScoring #FintechEthiopia