Что выведет код?
Anonymous Quiz
10%
One-Hot Encoding
13%
Ordinal Encoding
68%
Log Transformation
9%
Все вышеперечисленное
Forwarded from Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
🤖 Нейросети для дата-сайентиста: свежий гид по инструментам
Мир нейросетей меняется каждый день — выбрать подходящий инструмент для задач Data Science непросто.
Мы собрали в статье то, что действительно работает: какие модели помогают автоматизировать рутину, ускоряют кодинг и дают ощутимый буст продуктивности.
📊 Что выбрать под вашу задачу — читайте в обзоре!
📌 Подробнее: https://proglib.io/sh/yq0MaQtHrn
Библиотека дата-сайентиста #буст
Мир нейросетей меняется каждый день — выбрать подходящий инструмент для задач Data Science непросто.
Мы собрали в статье то, что действительно работает: какие модели помогают автоматизировать рутину, ускоряют кодинг и дают ощутимый буст продуктивности.
📊 Что выбрать под вашу задачу — читайте в обзоре!
📌 Подробнее: https://proglib.io/sh/yq0MaQtHrn
Библиотека дата-сайентиста #буст
Сейчас большинство представлений об ИИ ограничиваются одним агентом — моделькой, которая что-то предсказывает, генерирует или классифицирует.
Но реальный прорыв начинается, когда этих агентов становится несколько.
Когда они начинают взаимодействовать друг с другом.
Когда появляется координация, распределение ролей, память, планирование — всё это и есть мультиагентные системы (MAS).
— Microsoft делает язык DroidSpeak для общения между LLM
— Open Source-фреймворки вроде LangChain, AutoGen, CrewAI, LangGraph — бурно развиваются
— компании, включая МТС, уже применяют MAS в боевых задачах
🎓 На курсе мы подходим к этому практично:
Именно на третьем уроке вы впервые собираете не просто «умного бота», а живую систему из агентов, которая работает вместе — как команда.
Причём по-настоящему: врач, SQL-аналитик, travel-планировщик, Python-генератор, поисковик.
Please open Telegram to view this post
VIEW IN TELEGRAM
Ответ:
Anonymous Quiz
27%
df.write_parquet()
3%
pl.write_parquet()
19%
df.save_parquet()
51%
df.to_parquet()