Data Science | Machinelearning [ru]
17.9K subscribers
461 photos
14 videos
29 files
3.33K links
Статьи на тему data science, machine learning, big data, python, математика, нейронные сети, искусственный интеллект (artificial intelligence)

По вопросам рекламы или разработки - @g_abashkin

РКН: https://vk.cc/cJPGXD
Download Telegram
🤔 ИИ с человеческим лицом: какие ошибки повторяют модели и что с этим делать

В статье рассказывают, почему ИИ, как и люди, подвержен когнитивным искажениям: самоуверенность, предвзятость и шаблонное мышление — как это влияет на бизнес и технологии

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍1👎1
👩‍💻 Как работает модуль os в Python для работы с файловой системой?

Модуль os в Python предоставляет инструменты для взаимодействия с операционной системой. С его помощью можно управлять файлами и директориями, получать информацию о системе и переменных окружения, а также выполнять системные команды. Этот модуль особенно полезен для кроссплатформенных сценариев.

➡️ Пример:

import os

# Получение текущей директории
current_dir = os.getcwd()
print('Текущая директория:', current_dir)

# Создание новой директории
os.mkdir('new_folder')
print('Создана директория new_folder')


🗣 os позволяет удобно и кроссплатформенно работать с файловой системой, выполнять команды и настраивать окружение.
Please open Telegram to view this post
VIEW IN TELEGRAM
21
⚙️ Я делал концепции зданий 12 лет, а потом пришла нейросеть

12 лет я придумывал здания сам, но теперь рядом сидит ИИ. Рассказываю, как нейросети ворвались в архитектуру: где реально ускоряют, а где только мешают и требуют «додумать за них»

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
21
⚙️ Локальный чатбот без ограничений: гайд по LM Studio и открытым LLM

Ставлю себе локальный ИИ, чтобы не светить код в облаке. Подключаю LM Studio, балуюсь с системными промптами, прикручиваю бота к VS Code и проверяю, может ли он реально помогать в разработке

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
5
🧼 Почистить — значит улучшить

Устаревшие TODO, забытые константы, лишние зависимости — они не тормозят выполнение, но тормозят мышление.

👉 Совет: выделяй время на регулярную «гигиену проекта». Удаляй всё, что больше не используется. Не потому что надо — а потому что потом будет легче думать, читать и добавлять новое.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7
⚙️ Будущее ИИ — формальные грамматики

Разбираюсь, почему LLM иногда несут чушь: слишком много вариантов и мало правил. В статье покажу, как формальные грамматики помогают приручить этот хаос и научить модели мыслить структурно

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
5
This media is not supported in your browser
VIEW IN TELEGRAM
💯 нейросетей для ЛЮБЫХ задач.

Составили шпаргалку с бесплатными нейросетями - тексты, кодинг, аудио, видео, дизайн, слив данных и много чего ещё.

Подробности в закрепе
Please open Telegram to view this post
VIEW IN TELEGRAM
21
👀 Часть 2: Vision Transformer (ViT) — Когда трансформеры научились видеть

Рассказываю, как Vision Transformer заменил свёртки на внимание, почему изображения теперь режут на патчи, и в каких случаях трансформеры действительно видят, а когда всё ещё слепы.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
2
👩‍💻 Предсказание цены дома по площади

Напишите модель линейной регрессии, которая будет предсказывать цену дома на основе его площади в квадратных метрах.

Сгенерируйте искусственные данные, обучите модель и сделайте предсказание для нового значения.

Решение задачи🔽

import numpy as np
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt

# Генерация данных
np.random.seed(0)
area = np.random.randint(30, 150, size=100).reshape(-1, 1) # площадь от 30 до 150 м²
price = area * 1000 + np.random.normal(0, 10000, size=area.shape) # цена с шумом

# Обучение модели
model = LinearRegression()
model.fit(area, price)

# Предсказание
new_area = np.array([[100]])
predicted_price = model.predict(new_area)
print(f"Ожидаемая цена дома 100 м²: {predicted_price[0][0]:,.0f}₽")

# Визуализация
plt.scatter(area, price, label='Данные')
plt.plot(area, model.predict(area), color='red', label='Линейная модель')
plt.xlabel('Площадь (м²)')
plt.ylabel('Цена (₽)')
plt.legend()
plt.show()
Please open Telegram to view this post
VIEW IN TELEGRAM
62
🧠 Как ML помогает физикам искать новые частицы

В 2025 году российские ученые стали лауреатами Breakthrough Prize — престижной научной премии за фундаментальные открытия. Выпускники ШАДа Яндекса и специалисты НИУ ВШЭ применили машинное обучение для анализа данных с Большого адронного коллайдера.

📊 Кейс про то, как алгоритмы (CatBoost, генеративные модели и др.) работают на границе физики и Вселенной и использовались в исследованиях лауреатов

Читать
74👎1
⚙️ Генерация видео: Обзор интересных подходов | Text-2-video | Part 1

В статье разбирают основные методы генерации видео на основе текста (T2V): от адаптации T2I с AnimateDiff до новинок 2025 года вроде Wan2.1 и HunyuanVideo. Первая часть обзора

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
3
👩‍💻 Normalization of Numerical Data

Напишите функцию, которая принимает список чисел и нормализует его, преобразуя значения в диапазон от 0 до 1. Это полезно для подготовки данных перед обучением модели машинного обучения.

➡️ Функция работает следующим образом:

• Находит минимальное и максимальное значение в списке.

• Вычисляет нормализованное значение для каждого элемента по формуле: normalized = (𝑥 − min) / max − min)

• Возвращает новый список с нормализованными значениями.


Решение задачи🔽

def normalize(data):
min_val = min(data)
max_val = max(data)

# Избегаем деления на ноль, если все элементы равны
if max_val == min_val:
return [0.0] * len(data)

return [(x - min_val) / (max_val - min_val) for x in data]

# Примеры использования
data = [10, 20, 30, 40, 50]
print(normalize(data))
# Ожидаемый результат: [0.0, 0.25, 0.5, 0.75, 1.0]
Please open Telegram to view this post
VIEW IN TELEGRAM
42
⚙️ Как я не дал ИИ сойти с ума: гайд по промптам и багам

В статье — почему нейросети галлюцинируют, примеры «дорогих» ошибок, и промпты для тех, кто работает с кодом, текстами и дизайном.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
21👎1
⚙️ Claude, есть пробитие: взламываем самую защищенную модель

В статье показывают, как обойти фильтры модели Claude с помощью модифицированного метода внедрения системных директив, чтобы заставить её выполнять запрещённые инструкции

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
52
👩‍💻 Что такое обучение с учителем (supervised learning) в ML?

Обучение с учителем — это тип машинного обучения, при котором модель обучается на размеченных данных.

Каждый пример содержит вход (features) и правильный ответ (label), который модель должна научиться предсказывать.

➡️ Пример:
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

model = LogisticRegression()
model.fit(X_train, y_train)

print("Предсказания:", model.predict(X_test[:5]))


🗣️ В этом примере модель обучается на данных о цветах и учится определять их вид (например, ирис сетоса).


Это классический пример классификации — подтипа обучения с учителем.

🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
22
⚙️ ML на «плюсах»: 5 материалов о необычном подходе к обучению моделей

В статье показывают, как и зачем использовать C++ в машинном обучении: распознавание лиц, объекты в реальном времени и прирост в производительности без питоньих зависимостей

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
3🐳2
🧠 Как внедрять LLM?

Сейчас хайп вокруг чат-ботов стихает и фокус смещается в сторону внедрения LLM и решения прикладных задач для пользователей и бизнеса. Как именно внедрять LLM и какие Copilot-решения нужны бизнесу обсудят на Turbo ML Conf. Конфа пройдет 19 июля в Москве и объединит 35 докладчиков из российских бигтехов и топовых вузов.

📊 После деловой и теоретической программы гостей ждет практика в виде разных интерактивов, среди которых – диджитал-сканворды, демостенды, где можно посмотреть, что под капотом платформенных решений и диджей-сет. Онлайн-трансляции не будет, поэтому лучше заранее зарегистрироваться — количество мест на участие в конференции ограничено.
10👎2👍1🐳1
⚙️ Знакомьтесь, FRIDA. Открытая эмбеддинг-модель для русского языка

В этой статье мы расскажем о нашей новой модели FRIDA, которая сейчас (20.05.2025) занимает первое место в русскоязычном бенчмарке MTEB.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
21👍1👎1
👩‍💻 Оценка точности модели классификации (Accuracy Score)

Напишите функцию, которая вычисляет accuracy score — долю правильных предсказаний модели классификации. Это базовая метрика, часто используемая для оценки качества модели.

Функция работает следующим образом:

• Сравнивает каждую пару истинного (y_true) и предсказанного (y_pred) значения.

• Считает количество совпадений.

• Делит число правильных предсказаний на общее количество примеров


Решение задачи🔽

def accuracy_score(y_true, y_pred):
correct = sum(1 for true, pred in zip(y_true, y_pred) if true == pred)
return correct / len(y_true)

# Примеры использования
y_true = [0, 1, 1, 0, 1]
y_pred = [0, 0, 1, 0, 1]

print(accuracy_score(y_true, y_pred))
# Ожидаемый результат: 0.8
Please open Telegram to view this post
VIEW IN TELEGRAM
👍21