В машинном обучении Accuracy — это метрика качества классификации. Показывает, сколько предсказаний модель сделала правильно.
Решение задачи
def accuracy_score(y_true, y_pred):
correct = 0
for true, pred in zip(y_true, y_pred):
if true == pred:
correct += 1
return correct / len(y_true)
# Пример использования:
y_true = [1, 0, 1, 1, 0, 1]
y_pred = [1, 0, 0, 1, 0, 1]
print(accuracy_score(y_true, y_pred)) # 0.833...
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡3❤2🐳1
В статье разбирают, как выбрать MLOps-инструменты под уровень зрелости команды: почему решений много, но не все подходят, и как не утонуть в многообразии вариантов.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3
В статье разбирают, как LLM помогает банкам бороться с мошенничеством: от отслеживания подозрительных транзакций до анализа фишинговых схем — умная защита в действии.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
.transform()
от .apply()
в pandas?В pandas методы
.transform()
и .apply()
часто используются для обработки данных по столбцам и строкам, но они работают по-разному. Метод .apply()
применяет функцию к каждому элементу или ряду, и возвращает объект любой формы (например, DataFrame или Series). В отличие от него, .transform()
применяет функцию к каждой ячейке или группе и возвращает объект той же формы, что и входной.import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3], 'B': [10, 20, 30]})
# Используем .apply() для вычисления суммы по столбцам
print(df.apply(sum)) # Вернет Series с суммами столбцов
# Используем .transform() для нормализации каждого значения в столбце
print(df.transform(lambda x: (x - x.mean()) / x.std()))
# Вернет DataFrame с нормализованными значениями
🗣 .apply() подходит для сложных операций и агрегаций, а .transform() удобно использовать для обработки данных с сохранением исходной структуры.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8
В статье рассказывают, как новый протокол MCP от Anthropic стандартизирует взаимодействие LLM-агентов с сервисами и друг с другом. Грядёт эпоха упорядоченного ИИ-хаоса.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥6❤2
В статье рассказывают, как уязвимость в ИИ позволяет обмануть систему команд: если подделать приказ, модель выполнит даже запрещённое. Неужели DAN снова на свободе?
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4
Создайте функцию
plot_distributions
, которая принимает DataFrame
и автоматически определяет числовые и категориальные признаки. Затем строит гистограммы или bar-графики в зависимости от типа данных. Это удобно для EDA (исследовательского анализа данных).Решение задачи
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
def plot_distributions(df, max_categories=10):
for column in df.columns:
plt.figure(figsize=(6, 4))
if pd.api.types.is_numeric_dtype(df[column]):
sns.histplot(df[column].dropna(), kde=True)
plt.title(f'Гистограмма: {column}')
elif df[column].nunique() <= max_categories:
df[column].value_counts().plot(kind='bar')
plt.title(f'Категории: {column}')
else:
print(f'Пропущен {column}: слишком много уникальных категорий')
continue
plt.tight_layout()
plt.show ()
# Пример использования
df = pd.DataFrame({
'age': [23, 45, 31, 35, 62, 44, 23],
'gender': ['male', 'female', 'female', 'male', 'male', 'female', 'female'],
'income': [40000, 50000, 45000, 52000, 61000, 48000, 46000]
})
plot_distributions(df)
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4
В статье рассказывают, как в Домклик внедрили Feature Store в проект с огромным legacy: неожиданные трудности, полезные инсайты и реальный профит от новой архитектуры
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
В статье рассказывают о прорывной модели INTELLECT-2: обучение на рое вычислительных узлов вместо датацентров, асинхронное RL и инфраструктура, которую строили с нуля
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3
• Пришёл на вакансию дизайнера, а стал питонистом: как IT-специалисты нашли свою первую работу
• На сколько денег может рассчитывать ИТ-предприниматель в разных ветках развития
• Анализ задачи с собеседования в Google: конь и телефонные кнопки
• Быстрый старт в QA Fullstack: чем вооружиться будущему стажеру в Альфа-Банке
• Как убить самоорганизацию в команде: вредные советы для лидера
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
В статье старший MLOps-инженер из Selectel рассказывает о сравнении документации AMD и NVIDIA в области AI/DL/ML: ожидания, реальность и погружение в хаос терминов
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
В статье рассказывают, почему ИИ, как и люди, подвержен когнитивным искажениям: самоуверенность, предвзятость и шаблонное мышление — как это влияет на бизнес и технологии
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍1👎1
os
в Python для работы с файловой системой?Модуль
os
в Python предоставляет инструменты для взаимодействия с операционной системой. С его помощью можно управлять файлами и директориями, получать информацию о системе и переменных окружения, а также выполнять системные команды. Этот модуль особенно полезен для кроссплатформенных сценариев.import os
# Получение текущей директории
current_dir = os.getcwd()
print('Текущая директория:', current_dir)
# Создание новой директории
os.mkdir('new_folder')
print('Создана директория new_folder')
🗣 os позволяет удобно и кроссплатформенно работать с файловой системой, выполнять команды и настраивать окружение.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2⚡1
12 лет я придумывал здания сам, но теперь рядом сидит ИИ. Рассказываю, как нейросети ворвались в архитектуру: где реально ускоряют, а где только мешают и требуют «додумать за них»
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2⚡1
Ставлю себе локальный ИИ, чтобы не светить код в облаке. Подключаю LM Studio, балуюсь с системными промптами, прикручиваю бота к VS Code и проверяю, может ли он реально помогать в разработке
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡5
Устаревшие TODO, забытые константы, лишние зависимости — они не тормозят выполнение, но тормозят мышление.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7
Разбираюсь, почему LLM иногда несут чушь: слишком много вариантов и мало правил. В статье покажу, как формальные грамматики помогают приручить этот хаос и научить модели мыслить структурно
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡5
This media is not supported in your browser
VIEW IN TELEGRAM
Составили шпаргалку с бесплатными нейросетями - тексты, кодинг, аудио, видео, дизайн, слив данных и много чего ещё.
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡2❤1
Рассказываю, как Vision Transformer заменил свёртки на внимание, почему изображения теперь режут на патчи, и в каких случаях трансформеры действительно видят, а когда всё ещё слепы.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
Напишите модель линейной регрессии, которая будет предсказывать цену дома на основе его площади в квадратных метрах.
Сгенерируйте искусственные данные, обучите модель и сделайте предсказание для нового значения.
Решение задачи
import numpy as np
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
# Генерация данных
np.random.seed(0)
area = np.random.randint(30, 150, size=100).reshape(-1, 1) # площадь от 30 до 150 м²
price = area * 1000 + np.random.normal(0, 10000, size=area.shape) # цена с шумом
# Обучение модели
model = LinearRegression()model.fit (area, price)
# Предсказание
new_area = np.array([[100]])
predicted_price = model.predict(new_area)
print(f"Ожидаемая цена дома 100 м²: {predicted_price[0][0]:,.0f}₽")
# Визуализация
plt.scatter(area, price, label='Данные')
plt.plot(area, model.predict(area), color='red', label='Линейная модель')
plt.xlabel('Площадь (м²)')
plt.ylabel('Цена (₽)')
plt.legend()plt.show ()
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6⚡2