ИИ всё ещё не рептилоид: в статье — скептический разбор "интеллекта" нейросетей. Проверка на слонах, эволюция ответов Алисы, трезвый взгляд на истерики СМИ и разница между AGI и автокомплитом.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1🔥1
Показываю, как платформа WorkTeam превращает описания процессов на обычном языке в работающий бизнес-процесс — без кодеров, без боли и почти без магии.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🔥1
• Эволюция архитектур нейросетей в компьютерном зрении: сегментация изображений
• Заяц не вырастет в акулу. Или секреты гибкой инженерной культуры от Александра Бындю
• Все, пора увольняться: что я поняла после работы в токсичных командах
• Базовое программирование, или Почему джуны не могут пройти к нам собеседование
• Я стал аналитиком, потому что не смог быть программистом
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍2🔥1
Создайте Python-скрипт для обработки данных. Задача состоит в том, чтобы построить ETL-процесс, который очищает и агрегирует данные из CSV-файлов о продажах, а затем сохраняет агрегированные данные в новом файле.
Очистка данных: удаление записей с пустыми значениями в столбцах price или quantity.
Агрегация: подсчет общего количества проданных товаров и общей суммы по каждому продукту.
•
python app.py sales_data.csv
— создает новый файл aggregated_data.csv
с общей суммой и количеством проданных товаров по каждому продукту.Решение задачи
import pandas as pd
import sys
def clean_and_aggregate(file_path):
# Загружаем данные
data = pd.read_csv(file_path)
# Удаляем строки с пустыми значениями в колонках 'price' и 'quantity'
data.dropna(subset=['price', 'quantity'], inplace=True)
# Преобразуем колонки в числовой формат, ошибки игнорируем
data['price'] = pd.to_numeric(data['price'], errors='coerce')
data['quantity'] = pd.to_numeric(data['quantity'], errors='coerce')
# Удаляем строки с некорректными значениями
data.dropna(subset=['price', 'quantity'], inplace=True)
# Агрегируем данные
aggregated_data = data.groupby('product_id').agg(
total_quantity=('quantity', 'sum'),
total_sales=('price', 'sum')
).reset_index()
# Сохраняем в новый CSV
aggregated_data.to_csv('aggregated_data.csv', index=False)
print("Агрегация завершена. Данные сохранены в 'aggregated_data.csv'.")
if __name__ == "__main__":
if len(sys.argv) != 2:
print("Использование: pythonapp.py <путь к файлу CSV>")
sys.exit(1)
file_path = sys.argv[1]
clean_and_aggregate(file_path)
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6
Покажем, как связали нашу платформу ИИ и Озеро данных, чтобы модели удобно работали с витринами через Spark. Немного архитектуры, немного боли, немного магии.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3🔥1
Data leakage (утечка данных) — это ситуация, когда модель случайно получает информацию о будущем (о целевой переменной), которая недоступна на момент предсказания. Это приводит к переоценке качества модели во время обучения и к плохой работе на реальных данных.
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
# Пример: диагностические данные пациента
df = pd.DataFrame({
'age': [25, 40, 60, 35],
'blood_pressure': [120, 130, 150, 110],
'has_disease': [0, 1, 1, 0],
'diagnosis_code': [0, 1, 1, 0] # случайно совпадает с целевой переменной
})
X = df.drop('has_disease', axis=1)
y = df['has_disease']
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
model = LogisticRegression()
model.fit(X_train, y_train)
print("Train accuracy:", model.score(X_train, y_train))
🗣️ В этом примере diagnosis_code напрямую связан с целевой переменной has_disease. Модель «угадывает» ответы на тренировке, но это не работает в реальности. Такое скрытое совпадение — типичный пример data leakage
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
VI российский саммит и Премия CDO/CDTO Summit & Awards 2025 собрали лидеров цифровой трансформации из различных отраслей.
Это событие стало площадкой для обсуждения актуальных вопросов цифровизации, развития инфраструктуры на основе российского ПО и технологий, а также обмена опытом между представителями бизнеса и органов власти.
Сразу две награды получила МТС Web Services:
🟢 Платформа MWS Octapi получила Гран-при в номинации «Digital-платформа года». Octapi позволяет бесшовно интегрировать сервисы в экосистему, обеспечивая их эффективное взаимодействие и повышая надежность.
🟢 Павел Воронин генеральный директор МТС Web Services стал лауреатом премии CDO/CDTO, войдя в тройку лучших СЕО 2025 года в номинации «СЕО года цифровой компании».
Это событие стало площадкой для обсуждения актуальных вопросов цифровизации, развития инфраструктуры на основе российского ПО и технологий, а также обмена опытом между представителями бизнеса и органов власти.
Сразу две награды получила МТС Web Services:
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
Data Architect
•
Apache Hadoop, Apache Airflow, Greenplum, Apache NiFi, DWH, Apache Spark•
Уровень дохода не указан | Без опытаTeam Lead Data Platform
•
Python, SQL, Git, Apache Hadoop, Apache Spark, Apache Airflow, Apache Kafka•
Уровень дохода не указан | Без опытаData Science Tech Lead/Product owner
•
Python, SQL, Hadoop, Spark, Airflow•
Уровень дохода не указан | Без опытаPlease open Telegram to view this post
VIEW IN TELEGRAM
👍1
Расскажу про проект Endless Fun Machine: как я собрал генератор, где ИИ сам придумывает шутки и рисует их в мемы. И заодно покажу, как это можно адаптировать для синтетических данных
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👎1🔥1
Data Scientist рекомендательные системы (full time office)
Senior Data Scientist (Recommender Systems)
Data Scientist (Кипр)
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1🔥1
Фраза «потом починим» без тикета = «никогда не починим».
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10🐳1
Статья изучает применение метода CUPED в A/B-тестах для повышения чувствительности и сокращения выборок. Рассматривается его использование на этапе дизайна эксперимента без потери статистической мощности.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👎1
Напишите функцию, которая принимает две строки и проверяет, являются ли они анаграммами. Анаграммы — это слова, которые содержат одинаковые буквы в одинаковом количестве, но в разном порядке. Игнорируйте регистр и пробелы.
Пример:
result1 = are_anagrams("listen", "silent")
print(result1) # Ожидаемый результат: True
result2 = are_anagrams("hello", "world")
print(result2) # Ожидаемый результат: False
Решение задачи
def are_anagrams(str1, str2):
# Удаляем пробелы и приводим к одному регистру
str1 = ''.join(str1.lower().split())
str2 = ''.join(str2.lower().split())
# Проверяем, равны ли отсортированные символы
return sorted(str1) == sorted(str2)
# Пример использования:
result1 = are_anagrams("listen", "silent")
print(result1) # Ожидаемый результат: True
result2 = are_anagrams("hello", "world")
print(result2) # Ожидаемый результат: False
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5👎2
• Что читали на Хабре в 2024 году: анализ статей с Node.js, Google Sheets и каплей ChatGPT
• Поднимаем в облаке расшифровку речи в текст с помощью нейросетей. VPS на пределе возможностей
• Стоит ли ChatGPT о1 Pro своих денег? Небольшой тест-драйв модели
• Возможности LLM и RAG на примере реализации бота для поддержки клиентов
• Гетерогенные вычисления: проектирование и разработка вычислительной системы для нейросетей
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2🔥1
Статья предлагает разобраться в устройстве Diffusion моделей, их математике и принципах работы. Автор делится простыми объяснениями, примерами кода и результатами генерации изображений на собственной модели.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6❤1
Напишите функцию, которая принимает список и возвращает элемент, который встречается чаще всего. Если таких элементов несколько, вернуть любой из них.
Пример:
numbers = [1, 3, 2, 3, 4, 1, 3, 2, 1]
result = most_frequent(numbers)
print(result)
# Ожидаемый результат: 3 (или 1, если в списке оба встречаются одинаково часто)
Решение задачи
from collections import Counter
def most_frequent(lst):
count = Counter(lst)
return max(count, key=count.get)
# Пример использования:
numbers = [1, 3, 2, 3, 4, 1, 3, 2, 1]
result = most_frequent(numbers)
print(result) # Ожидаемый результат: 3
Please open Telegram to view this post
VIEW IN TELEGRAM
🐳3❤1
Junior Data Engineer
Data Analyst (Junior) | Аналитик Данных (Младший)
Data инженер DWH Junior (Hadoop)
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3
В статье собрали 25 промтов для сжатия текста и сравнили, как разные нейросети вроде ChatGPT-4o и Gemini-2.5 превращают километры букв в понятные и короткие саммари.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1👍1
Feature Scaling (масштабирование признаков) — это приведение всех признаков к одному масштабу, чтобы модель обучалась корректно.
Некоторые алгоритмы (например,
k-NN
, SVM
, градиентный спуск) чувствительны к разнице в диапазонах данныхfrom sklearn.preprocessing import StandardScaler
import numpy as np
X = np.array([[1, 100], [2, 300], [3, 500]])
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
print(X_scaled)
🗣️ В этом примере признаки приводятся к виду с нулевым средним и единичным стандартным отклонением.
Без масштабирования одна "большая" переменная может полностью доминировать над другими..
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍1
Data Scientist в области языковых моделей (Middle)
Middle Data Engineer
Data Scientist
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1